

Appendix A

Harmonia^{+PL} – procedure for negative impact risk assessment for invasive alien species and potentially invasive alien species in Poland

QUESTIONNAIRE

A0 | Context

Questions from this module identify the assessor and the biological, geographical & social context of the assessment.

a01. Name(s) of the assessor(s):

first name and family name

- 1. Henryk Okarma
- 2. Magdalena Bartoszewicz
- 3. Wojciech Solarz

acomm01.	Comments:					
		degree	affiliation	assessment date		
	(1)	prof. dr hab.	Institute of Nature Conservation, Polish Academy of Sciences in Cracow	03-02-2018		
	(2)	dr		22-01-2018		
	(3)	dr	Institute of Nature Conservation, Polish Academy of Sciences in Cracow	05-02-2018		

a02. Name(s) of the species under assessment:

Polish name:	Piżmak
Latin name:	Ondatra zibethicus Linnaeus, 1766
English name:	Muskrat

Unia Europejska Fundusz Spójności

Współfinansowano w ramach projektu nr POIS.02.04.00-00-0100/16 pn. *Opracowanie zasad kontroli i zwalczania inwazyjnych gatunków obcych wraz z przeprowadzeniem pilotażowych działań i edukacją społeczną ze środków Unii Europejskiej w ramach Programu Infrastruktura i Środowisko 2014-2020*

acomm02.	Comments:	
	Polish name (synonym l) –Piżmak amerykański	Polish name (synonym II) Piżmoszczur
	Latin name (synonym I) Ondatra zibethica	Latin name (synonym II) <i>Castor zibethicus</i>
	English name (synonym I) Musk rat	English name (synonym II) –

a03. Area under assessment:

Poland

acomm03. Comments:

a04. Status of the species in Poland. The species is:

	native to Poland
	alien, absent from Poland
	alien, present in Poland only in cultivation or captivity
	alien, present in Poland in the environment, not established
Х	alien, present in Poland in the environment, established

aconf01.	Answer provided with a	low	medium	high X	level of confidence
----------	------------------------	-----	--------	-----------	---------------------

acomm04. Comments:

Muskrat is a North American species. In Europe, it appeared in 1905, when 5 individuals (2 males and 3 females) were released in the Czech Republic, on the ponds near Prague (Hoffmann 1958 – P, Sokolov and Lavrov 1993 – P). The local conditions proved to be very favorable to the muskrats and the range of the species population quickly expanded in all directions at a rate of about 25 km per year, and large rivers were the routes of their invasion (Nowak 1971 – P). By 1927, around 40% of the then Austro-Hungarian territory had already been occupied by these animals (Gosling and Baker 1989 – P). In 1924, the first observations in southern Poland took place, where muskrats appeared naturally, most likely expanding their range of occurrence from the Czech Republic. Furthermore, in the 1920s breeding farms were developing in Poland, intended for fur, and the escapees from the farms fed the wild population. By the end of the 1950s, muskrat had already inhabited almost the entire country, with the exception of the highest mountain ranges (Okarma 2011 – P). Since the 1980s, the muskrat population in Poland started to fall quite drastically (Brzeziński et al. 2010) but nowadays slow recovery of the species range in Poland is observed (Okarma 2018 – B).

a05. The impact of *the species* on major domains. *The species* may have an impact on:

- **X** the environmental domain
- **X** the cultivated plants domain
- **X** the domesticated animals domain
- **X** the human domain
- **X** the other domains

acomm05. Comments:

Muskrat has a strong impact on the dynamics of aquatic vegetation by biting, changing the composition and structure of species vegetation and the creating muddy elevations (Birnbaum 2013 – B, Triplet 2015 – B). Muskrat affects the vegetation of coastal strip of water reservoirs (Pietsch 1982 – P, Krauss 1990 – P, Diemer 1996 – P), especially the reed beds of *Phragmites communis* (Burghause 1988 – P). It can also destroy water plants belonging to special care species. These rodents can also sometimes feed on molluscs,

crustaceans and water insects, causing strong pressure on endangered species (Hochwald 1990 – P, Zimmermann et al. 2000 – P). By eating clams, the muskrat may indirectly affect fish species that spawn in their shells (e.g. *Rhodeus amarus*). Muskrats also cause damage to agricultural crops near reservoirs and watercourses, particularly in maize and sugar beet (Baker 1972, 1983 – P). Muskrat is a carrier of several dozen parasites, including tapeworms that are dangerous to humans and animals, including *Echinococcus multilocuralis* (Hoffmann 1958 – P, Böhmer et al. 2001 – P). It may also be a source of many diseases such as leptospirosis, tularemia, giardiasis (Hatler et al. 2003 – I). By digging burrows at the edges of reservoirs and watercourses, muskrat may causes their erosion, and also has a significant negative impact on hydrotechnical objects, such as floodbanks, weirs, drainage ditches, as well as weakens constructions of railway embankments and roads (Birnbaum 2013 – B). It also happens to bite through fishing nets and other fishing gear (Burghause 1996 – P).

A1 | Introduction

Questions from this module assess the risk for *the species* to overcome geographical barriers and – if applicable – subsequent barriers of captivity or cultivation. This leads to *introduction*, defined as the entry of *the organism* to within the limits of *the area* and subsequently into the wild.

a06. The probability for *the species* to expand into Poland's natural environments, **as a result of self-propelled expansion** after its earlier introduction outside of the Polish territory is:

low medium X high	1				
aconf02.	Answer provided with a	low	medium	high X	level of confidence
acomm06.	Comments:				
	Muskrat inhabits the whol – P, 2018 – B).	e territory of	Poland and is a	n established	species (Okarma 2011

a07. The probability for *the species* to be introduced into Poland's natural environments by **unintentional human actions** is:

X	low medium high					
acon	f03.	Answer provided with a	low	medium	high X	level of confidence
acon	nm07.	Comments:				

This species has been present in Poland for several decades.

a08. The probability for *the species* to be introduced into Poland's natural environments by **intentional human actions** is:

X	low medium high					
acon	f04.	Answer provided with a	low	medium	high X	level of confidence

acomm08. Comments:

The appearance of muskrat and its spread to the majority of Europe is the result of intentional human activities. Over the past few decades the species was kept in fur-farms, however, currently it is not considered as a farmed species. Currently, this species is found in Poland in the natural environment and is an established species.

A2 | Establishment

Questions from this module assess the likelihood for *the species* to overcome survival and reproduction barriers. This leads to *establishment*, defined as the growth of a population to sufficient levels such that natural extinction within *the area* becomes highly unlikely.

a09. Poland provides climate that is:

non-optimal sub-optimal х optimal for establishment of the species aconf05. Answer provided with a level of confidence low medium high Х acomm09. Comments: Within its original range the muskrat inhabits North America, with the exception of its northernmost ends. The success of the establishment and expansion of the muskrat in Poland is proof that the optimal climatic conditions for this species prevail in our country. Climatic similarity between the native and introduced ranges exceeds 90%.

a10. Poland provides habitat that is

X	non-opt sub-opti optimal	optimal optimal nal for establishment of <i>the species</i>							
acon	f06.	Answer provided with a	low	medium	high X	level of confidence			
acomm10.		Comments: Muskrat lives in its natural environment of various types of surface waters. These are mainly freshwater habitats, such as slowly flowing rivers, lakes, ponds, marshes, wetlands, peat bogs, but also drainage ditches (Triplet 2015 – B). It may also live in estuaries, brackish waters and saltwater habitats (McConnell and Powers 1995 – P). However, it avoids watercourses with strong current. The same habitat preferences are found in Europe (Genovesi 2006 – B). Such habitats are commonly found in Poland, that is why the							

A3 | Spread

Questions from this module assess the risk of *the species* to overcoming dispersal barriers and (new) environmental barriers within Poland. This would lead to spread, in which vacant patches of suitable habitat become increasingly occupied from (an) already-established population(s) within Poland.

Note that spread is considered to be different from range expansions that stem from new introductions (covered by the Introduction module).

a11. The capacity of *the species* to disperse within Poland by natural means, with no human assistance, is:

	very low
	low
	medium
	high
Х	very high

aconf07.	Answer provided with a	low	medium	high X	level of confidence		
acomm11.	Comments: Dispersion from a single so Muskrats can migrate ove (Böhmer et al. 2001 – P). Population expansion (Data)Natural spread is the main front of invasion moves at expansion within a range fr In France, the area of exist years before 1959 (Aubry 3 1980 and 1988, and alread country (Danell 1996 – P) 1924, spontaneously enter over the country (Okarma dropped but the reasons for	urce (Data type r long distance a type: B) n reason for e a rate of 0.9 rom 51 to 230 ence of the sp 1959 – P). The dy in 1996 the . Muskrat ap ing from the 2011 – P). In for this pheno-	be: A) ses (up to 160 xpanding the s to 25.4 km / y km ² / year (Da becies grew at e introduction e species was peared within south. In 30 y the 1980s, the menon are no	km / day) flo species range year, which co anell 1977 – P a rate of 3,30 of muskrat to found almost g the present ears it has alr population of t clear. It was	owing in river currents (Triplet 2015 – B). The prresponds to a spatial , Birnbaum 2013 – B). 0 km ² / year within 25 o Norway took place in throughout the entire : borders of Poland in eady spread almost all f this species in Poland probably the result of		
	natural fluctuations in the population of rodent-like species, as well as diseases, parasites, predation of <i>Neovison vison</i> American mink (Okarma 2011 – P, Brzeziński et al. 2010 – P, Romanowski and Karpowicz 2013 – P).						

- **a12**. The frequency of the dispersal of *the species* within Poland by **human actions** is:
 - Х low medium high aconf08. Answer provided with a low medium high level of confidence Х acomm12. Comments: The probability of spreading with the participation of humans was high until 1934, when the muskrat was a fur breeding animal in Poland. After introducing orders to apply protection against escapes, the breeding quickly stopped (Okarma 2011 – P). Currently, the muskrat does not have the status of a farm animal in Poland, it is a species widely distributed in nature.

A4a | Impact on the environmental domain

Questions from this module qualify the consequences of *the species* on wild animals and plants, habitats and ecosystems.

Impacts are linked to the conservation concern of targets. Native species that are of conservation concern refer to keystone species, protected and/or threatened species. See, for example, Red Lists, protected species lists, or Annex II of the 92/43/EWG Directive. Ecosystems that are of conservation concern refer to natural systems that are the habitat of many threatened species. These include natural forests, dry grasslands, natural rock outcrops, sand dunes, heathlands, peat bogs, marshes, rivers & ponds that have natural banks, and estuaries (Annex I of the 92/43/EWG Directive).

Native species population declines are considered at a local scale: limited decline is considered as a (mere) drop in numbers; severe decline is considered as (near) extinction. Similarly, limited ecosystem change is considered as transient and easily reversible; severe change is considered as persistent and hardly reversible.

a13. The effect of *the species* on native species, through predation, parasitism or herbivory is:

	X	inapplica low medium high	able				
	acont	609.	Answer provided with a	low	medium	high X	level of confidence
aconf09.		m13.	Comments: The muskrat lives in variou It is a herbivorous rodent a feeds on locally most abur diet: reed, cattail and rush beds area (Diemer 1996 – only one individual is able a study conducted on the v in the vegetation complex (Smirnov and Tretyakov 11 parts of plants, and in wint more vegetation than they per day will bite 4 times m mass (Birnbaum 2013 – B with high population densi contribute to reducing th Paulauskas 2012 – P). Mu amphibians, reptiles) and r on some endangered spect <i>Margaritifera margaritifera</i> Skyriene and Paulauskas 2 species of fish, including p requires the presence of su – P).	is types of wa and is conside indant food. He h (Ramsgaard P), particular to cut 1.5 m2 Valaam Island d decreased fr 998 – P). Mu ter they bite p y actually eat iore vegetatio), and uses a ity, it significa- ne number of iskrats can su nolluscs, crust cies, for exan a pearlfish (H 012 – P). Indi protected spe- uitable mollus	ter habitats (G red a generalis owever, only a 2005 – P). It rly on common of reed during in the Europer rom 16.6% to 9 skrats chew pr lants at their ru (Smirnov and T n than the mas large part for intly affects cos of rare species upplement thei taceans and wa nple clams from lochwald 1990 rectly, its pred ciss such as ru sc species in the	enovesi 2006 t species in te few types of mainly feeds n reed (<i>Phrag</i> g the night (B an part of Ru 5.4% after in rimarily on rh oots, as a res Tretyakov 199 ss of its body, the construct astal vegetati s of aquatic ir diet with s ater insects ex m <i>Anodonta</i> – P, Zimmer lation on mol osacea, which e water reser	 B, Triplet 2015 – B). B, Triplet 2015 – B). B, Triplet 2015 – B). B, The share of cane troducing the muskrate in the reed mites communis), and urghause 1988 – P). In ssia, the share of cane troducing the muskrate izomes and cut lower ult, they remove much 28 – P). One individual and the set of the plant tion of shelters. Thus, on. In addition, it may plants (Skyriene and mall vertebrates (fish, certing strong pressure and Unio genera, and mann et al. 2000 – P, luscs may affect some in developmental cycle voir (Smith et al. 2004

a14. The effect of *the species* on native species, through competition is:

X	low medium high					
acon	if10.	Answer provided with a	low	medium	high X	level of confidence
acon	nm14.	Comments: The most likely competitive terrestris) and European additionally in the case of val. 1988, Skyriene and Paula direct competition between rodent water species: beau competition between beau	ors of muskr beaver (<i>Cas</i> vole – they ea auskas 2012 – n these specie iver, nutria an er and muskra	rat in Europe a tor fiber), whi at the same foo P). However, th s. Conducted re nd muskrat, do at (Ruys et al. 20	are Europea ch inhabit d (Wilner et nere is no cle esearch on h o not confin 011 - P).	an water vole (<i>Arvicola</i> the same biotope, and al. 1980 – P, Prūsaitė et ear scientific evidence for abitat selectivity of three m the hypothesis about

a15. The effect of *the species* on native species, through **interbreeding** is:

Х	no / very low				
	low				
	medium				
	high				
	very high				

			I				
	acor	ıf11.	Answer provided with a	low	medium	high X	level of confidence
	acon	nm15.	Comments:				
			There are no scientific re species, because muskrat Poland.	ports on the is not closely	possibility of related to na	muskrat inte aturally occur	rbreeding with native ring rodent species in
a16 . ⊺	he ef	fect of <i>the</i>	e species on native species b	y hosting path	ogens or para	sites that are	harmful to them is:
		very low					
		low					
		medium					
	X	high verv high	1				
	~	verynigi					1
	acor	lf12.	Answer provided with a	low	medium	high X	level of confidence
	acon	nm16.	Comments:				
			Muskrats are a reservoir a animals (Branquart et al. 2 nearly 100 pathogens (Graf – N). In North America, in t the muskrat: 36 species of and 4 species of acanthoco revolutum, Plagiorchis pro- opaca nematode and Hym al. 1980 – P). After introduc and Hoffmann (1958 – P) of tapeworms and 27 species trematoda (Echinostoma Psilotrema spiculigerum, taeniaeformis, Tetratirotae muskrats (Mazeika et al. 2)	of various pa 2011 – B). In t bda 1954 – P, the natural ran trematoda, 1 ephalans (Jilel ximus and Qu enolepis spp. ction to Europ confirmed that s of nematoo sp., Plagic P. simillimun enia polyacan 003 – P, Maze	rasites that ca he entire rang Skyriene and nge, 66 species 1 species of ta k 1977 – P). T <i>inqueserialis of</i> and <i>Taenia ta</i> e, the species t there are 41 des found in <i>orchis elegan</i> m) and 3 sp tha, <i>Echinoco</i> eika et al. 2009	an have a neg e of species, Paulauskas 20 s of internal p apeworms, 15 he most com quinqueseriali took over man species of tre muskrat. In L s, Skrjabinop pecies of tap pecies of tap pecies of tap	gative impact on wild muskrat is a carrier of 12 – P, Najberek 2018 arasites were found in species of nematodes mon are: <i>Echinostoma</i> s trematoda; <i>Trichuris</i> apeworms (Willner et ny European parasites, matoda, 22 species of ithuania, 5 species of olagiorchis ondatrae, peworms (<i>Hydatigera</i> <i>ularis</i>) were found in se species of parasites

Thiskrats (Mazeika et al. 2003 – P, Mazeika et al. 2009 – P). All these species of parasites are found in Europe in many species of aquatic birds and mammals. The biggest threat is the transfer of *Echinococcus multilocuralis* (echinococcosis may lead to animal death) and Q fever (diseases from the OIE list). Various authors indicate that up to 28% of the population of this species is infected. The ultimate hosts are predatory mammals. When the ultimate host catches the rodent, adult tapeworms grow in its small intestine. Because the muskrat is among the victims of the *Vulpes vulpes fox* and *Nyctereutes procyonoides* racoon dog, the infected rodents are a source of infection for predatory mammals (Reinhardt et al. 2003 – P).

a17. The effect of *the species* on ecosystem integrity, by **affecting its abiotic properties** is:

low mediur X high	n				
aconf13.	Answer provided with a	low	medium	high X	level of confidence
acomm17.	Comments:				
	Muskrat affects the abiotic vegetation. It eats a mass a large volume of feces fall be the change of some w content, pH, conductivity an	factors of t of vegetable ing into the ater quality d content of	he ecosystem b e food that is e water (Birnbau parameters, su organic sedimen	y eating a qual to its m 2013 – B ich as: wat nts (de Szala	large amount of aquatic body weight, producing). The effect of this may er temperature, oxygen ay and Cassidy 2001 – P).

Furthermore, the dynamics of soil nitrogen changes, which is an important element of the marshy and wetland communities (Connors et al 2000 – P). The impact of the species was therefore rated as large, i.e. in the worst case, the species can cause hardly reversible changes regarding processes occurring in special care habitats, e.g. 3130 habitat- standing waters, oligotrophic to mesotrophic, with *Littorelletea uniflorae* and/or *Isoëto-Nanojuncetea* vegetation, or 3270-rivers-with-muddy-banks with *Chenopodium rubri* p.p. *Bidention* p.p. vegetation.

a18. The effect of *the species* on ecosystem integrity, by **affecting its biotic properties** is:

low mediur X high	n				
aconf14.	Answer provided with a	low	medium	high X	level of confidence
acomm18.	Comments: Muskrat affects the integri species composition and significantly changes the h species of special care, ma Triplet 2015 – B). The nur decreasing. By eating the r have an indirect negative developmental cycle requires reservoir. Muskrats also r aquatic vegetation and ea (Triplet 2015 – B). On the o plants, limiting the range	ity of ecosyste vegetation s nabitat condit aking them m mber of conv molluscs, part impact on s uires the pre educe the ov ating protecte other hand, m e (and bioma	ems by strongly structure, and tions for fish a nore vulnerable renient places f icluarly from A some species of sence of suita verall ecologica ed and endang uskrat activity iss) of the Typ	y reducing pla creating mu nd aquatic in to predation for spawning <i>nodonta</i> and of fish, e.g. <i>A</i> able mollusc al value of we ered species can increase	ant mass, changing the iddy backshores. This ivertebrates, including in (Birnbaum 2013 – B, and raising fry is also Unio genera, muskrats Amur bitterling, which species in the water etlands, by destroying of plants and animals the species diversity of plia narrowleaf cattai
	 (Connors et al 2000 – P) muskrat, the formation of important for the feeding of – P). The impact of the spectra can cause hardly reversible 3130 oligotrophic to meson vegetation. 	a mosaic of o of ducks, espe cies was there changes regar crophic, with <i>l</i>	e, the diversit pen surfaces an cially chicks, in fore rated as la ding processes <i>Littorelletea un</i>	y of microsp mong compac the open wa rge, i.e. in the occurring in sp <i>iflorae</i> and/o	there's created by the st aquatic vegetation is ter (Nummi et al. 2006 worst case, the species becial care habitats, e.g. or Isoëto-Nanojunceted

A4b | Impact on the cultivated plants domain

Questions from this module qualify the consequences of *the species* for cultivated plants (e.g. crops, pastures, horticultural stock).

For the questions from this module, consequence is considered 'low' when presence of *the species* in (or on) a population of target plants is sporadic and/or causes little damage. Harm is considered 'medium' when *the organism's* development causes local yield (or plant) losses below 20%, and 'high' when losses range >20%.

a19. The effect of the species on cultivated plant targets through herbivory or parasitism is:

	inapplicable
	very low
Х	low
	medium
	high
	very high

aconf15.	Answer provided with a	low	medium	high	level of confidence
				X	

acomm19. Comments:

In the natural range of occurrence, muskrat species cause quite significant damage to agricultural crops near reservoirs and watercourses where they live (Baker 1983 – P). In Europe, the influence of these rodents on crops, mainly maize and sugar beet (Becker 1972 – P) has been rather low, thus the impact was rated as low. The probability of impact on crops was estimated as medium (it will affect 1/3-2/3 of target crops) and the impact – as low (the condition of plants or yield will be decreased by less than 5%).

a20. The effect of *the species* on cultivated plant targets through **competition** is:

Х	inapplic	able				
	very low	1				
	low					
	medium					
	high					
	very hig	h				
acon	f16.	Answer provided with a	low	medium	high	level of confidence
acon	nm20.	Comments:				
		The species is an animal.				

a21. The effect of *the species* on cultivated plant targets through **interbreeding** with related species, including the plants themselves is:

X	inapplic no / ver low mediun high	rable ry low n				
acon	f17.	Answer provided with a	low	medium	high	level of confidence
acom	1m21.	Comments: The species is an animal.				

a22. The effect of *the species* on cultivated plant targets by affecting the cultivation system's integrity is:

X	very low low medium high very hig	, h				
acon	f18.	Answer provided with a	low	medium	high X	level of confidence
acon	nm22.	Comments:				
The essential part of the muskrat diet is aqua plant crops occurs only sporadically and is rathe of the species on the condition or yield of cro properties, including the circulation of elemen networks, etc., will be very small.			is aquatic veg is rather small d of crop plant elements, hyd	etation, and (Becker 197 ts by chang rology, phy	d in Europe, damage to 72 – P). Thus, the impact ing the agro-ecosystem sical properties, trophic	

a23. The effect of *the species* on cultivated plant targets by hosting **pathogens or parasites** that are harmful to them is:

X	very low low medium high very hig	r h				
acoi	nf19.	Answer provided with a	low	medium	high X	level of confidence
acomm23.		Comments: There is no literature inform	nation abou	t the species be	ing the hos	t or vector of pathogens

A4c | Impact on the domesticated animals domain

Questions from this module qualify the consequences of *the organism* on domesticated animals (e.g. production animals, companion animals). It deals with both the well-being of individual animals and the productivity of animal populations.

a24. The effect of *the species* on individual animal health or animal production, through **predation or parasitism** is:

X	inapplica very low low medium high	able				
	very high	ı				
acon	f20.	Answer provided with a	low	medium	high X	level of confidence
acomm24.		Comments:				
Muskrat is a herbivorous species, but complements its diet with aquatic inver small vertebrates (Willner et al. 1980 – P). Therefore, it does not affect th a single animal or animal production through predation or parasitism.						aquatic invertebrates or not affect the health of sm.

a25. The effect of *the species* on individual animal health or animal production, by having properties that are hazardous upon **contact**, is:

X	very lo low mediui high very hi	w m gh				
acont	f21.	Answer provided with a	low	medium	high X	level of confidence
acom	m25.	Comments:				
Generally, the species has no biological, physical and / or chemical properties that harmful when in contact with farm animals and domestic animals or for animal product (e.g., toxins or allergens). Muskrats have sharp incisors and only in the absence of possibility of escape and danger to life, they can defend themselves very aggressi						ical properties that are or for animal production y in the absence of the selves very aggressively

The probability of direct contact is low (less than 1 case per 100 000 animals per year) and the consequences are low (full recovery).

a26. The effect of *the species* on individual animal health or animal production, by hosting **pathogens or parasites** that are harmful to them, is:

X	inapplica very low low medium high very hig	able , h				_
acor	nf22.	Answer provided with a	low	medium	high X	level of confidence
acomm26.		Comments: Muskrats are carriers of nematodes and headed w individual animal and anim 1980 – P, Branquart et al physical condition, weakne <i>multilocularis</i> (OIE list) is rodents may be infected (among others in dogs and After eating the rodent in the was also found that musk genus, causing diseases of 2004 – P).	several doze worms that can hal husbandry 2011 – B). I ess and even c particularly c (Ahlmann 199 cats that are i the small integrat is a carrie f the digestive	en different p an have a ne. (Hoffmann 19 Many of these death of dome dangerous, an 7 – P, Romig its final hosts (stine of the fin er of pathoger e system of m	parasites: tre gative impact 258 – P, Jilek 2 e parasites ca estic and farm d 28% of the 1999 – P). Th (just like other al host, adult nic protozoa co nany species of	matodes, tapeworms, t on the health of an 1977 – P, Willner et al. n lead to a decline in animals. <i>Echinococcus</i> e population of these is tapeworm is found, r predatory mammals). tapeworms develop. It of the <i>Cryptosporidium</i> of animals (Zhou et al

A4d | Impact on the human domain

Questions from this module qualify the consequences of *the organism* on humans. It deals with human health, being defined as a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity (definition adopted from the World Health Organization).

a27. The effect of *the species* on human health through **parasitism** is:

X	inapplica very low low medium high vert high	able				
acor	nf23.	Answer provided with a	low	medium	high	level of confidence
acoi	mm27.	Comments: This species is not a parasit	te.		<u>, , , , , , , , , , , , , , , , , , , </u>	

a28. The effect of *the species* on human health, by having properties that are hazardous upon **contact**, is:

Х	very low
	low
	medium
	high
	very high

aconf24.	Answer provided with a	low	medium	high X	level of confidence		
acomm28.	Comments: Muskrats are small, mainly are able to use them by str to escape. They can then d 1996). However, this prob	y herbivorous rongly biting in efend themse ability is low:	, rodents. How n a situation w lves very vigor there is less th	wever, they have they have they are rously and even han one contained to be the they are the the the the the the the the the th	ave sharp incisors and at risk and are unable at attack a man (Danell act per 100,000 people		
	Muskrats are small, mainly herbivorous, rodents. However, they have sharp incisors and are able to use them by strongly biting in a situation where they are at risk and are unable to escape. They can then defend themselves very vigorously and even attack a man (Danell 1996). However, this probability is low: there is less than one contact per 100,000 people in a year, and consequences are reversible do not lead to permanent disability.						

a29. The effect of *the species* on human health, by hosting **pathogens or parasites** that are harmful to humans, is:

inap very low med high X very	olicable Iow ium high				
aconf25.	Answer provided with a	low	medium	high X	level of confidence
acomm29.	Comments: Dozens of species of paras (Hoffmann 1958 – P, Willin even infect humans, usuall et al. 2003 – P). Among th <i>taeniaformis</i> , and especiall 2001 – P), causing echinoo host. After accidental inges penetrates blood vessels a tissue develops and infiltra the disease is chronic, clinic is long and expensive. The of diagnosis, in patients un et al 2008 – P). The muskr the pathogens it carries: b protozoa, e.g. cryptosporio A human may get infected	ites and vario er et al. 1980 y through the he dangerous y a tapeworm coccosis. For stion of the ep nd most of the tes reminisce cal symptoms mortality rate dergoing surg rat can also b acteria, e.g. I liosis (Zhou e by drinking p	bus types of part – P, Branquar muskrat-dom tapeworms to <i>Echinococcus</i> this parasite, ggs, the oncos hem (99% of c ent of neoplast appear after s of untreated gery and chem te a source of eptospirosis, to t al 2004 – P) unboiled wate	athogens we t et al. 2011 estic animal- chere are <i>Tac</i> <i>multilocarus</i> man is an in phere release ases) enter t ic changes ar 5-15 years. Ec patients exce otherapy, it of many danger ularemia (Ha and giardiasis r contaminat	re found in the muskrat – B), some of them may human route (Reinhardt enia hydatigena, Taenia 5 (OIE list) (Böhmer et al. termediate – accidental ed in the small intestine he liver. The connective re formed. The course of chinococcosis treatment eds 90% within 10 years drops to 10-14% (Gawor rous diseases caused by atler et al. 2003 – I) and s (Hatler et al. 2003 – I) ted by these pathogenic

A4e | Impact on other domains

Questions from this module qualify the consequences of *the species* on targets not considered in modules A4a-d.

a30. The effect of the species on causing damage to infrastructure is:

acomm30. Comments:

Muskrats dig burrows (usually with underwater entrance, 15-20 cm in diameter), which are their daily shelters, breeding sites and food stores, in the banks of watercourses and reservoirs, and in earth structures built by man. Burrows weaken and destroy floodbanks, dams of fish ponds and other water reservoirs, road and railway embankments or bridgeheads. All these constructions may be consequently interrupted by water pressure, which may result in losses in agriculture, fishing industry and aquaculture, as well as damage to property and threat to human life (Becker 1972 – P, Skyriene and Paulauskas 2012 – P). In Germany, it was estimated that in the years 1996-1997 the total costs associated with losses caused by muskrat and expenditures incurred to reduce the number of these rodents amounted to more than 12 million euro per year, and the expenses incurred as a result of damage done by muskrat on roads and water reservoirs reached 2,5 million euros (Reinhardt and others 2003 - P). In the Netherlands, the costs of very intense control of Muskrat numbers (elimination of all techniques across the country and throughout the year, with the exception of poison) amounted to 35 million euro in 2007 (Bos and Ydenberg 2011 - P).

A5a | Impact on ecosystem services

Questions from this module qualify the consequences of *the organism* on ecosystem services. Ecosystem services are classified according to the Common International Classification of Ecosystem Services, which also includes many examples (CICES Version 4.3). Note that the answers to these questions are not used in the calculation of the overall risk score (which deals with ecosystems in a different way), but can be considered when decisions are made about management of *the species*.

a31. The effect of the species on provisioning services is:

	significantly negative
Х	moderately negative
	neutral
	moderately positive
	significantly positive

aconf27.	Answer provided with a	low	medium	high	level of confidence
				Х	

acomm31. Comments:

Muskrats only sporadically feed on crop plants and cause little local damage, which is why a small negative impact on plant production is estimated. It is possible that in case of breaking of dams of fish ponds, there may be significant losses in the fishing industry. It seems, however that decrease in the muskrat population in recent years (Brzeziński et al. 2010 - P, Romanowski and Karpowicz 2013 - P) showed that this is not a significant problem in Poland. This is confirmed by surveys carried out in 2003-2004 in eastern Poland: in the vast majority of cases, the muskrat was not perceived as a species that poses economic problems. Species particularly conflicting for fish farmers were: cormorant, gray heron, beaver and otter (Kloskowski 2011 - P).

a32. The effect of the species on regulation and maintenance services is:

- Xsignificantly negativemoderately negative
 - neutral
- moderately positive
- significantly positive

aconf28.	Answer provided with a	low	medium	high	level of confidence
				X	

acomm32. Comments:

Muskrats, especially if they reach a high population density, can have a negative impact on the degree of flood protection (Birnbaum 2013 – B). Floodbanks and banks of watercourses and reservoirs may be weakened by burrows dug in them, which may be broken in case of higher water levels. Due to carrying several dozen pathogens, the species affects the regulation of zoonoses.

a33. The effect of the species on cultural services is:

X	significa modera neutral modera significa	ntly negative tely negative tely positive ntly positive						
acor	nf29.	Answer provided with a	low	medium	high X	level of confidence		
acomm33.		Comments: By digging burrows, thereby weakening the banks of watercourses and reservoirs, muskrats increase the risk of human injuries or animals grazed on the river banks. Collapsing burrows are also a hazard to drivers (bicycles, motorcycles, cars). This may lead to accidents during recreational activity						

A5b | Effect of climate change on the risk assessment of the negative impact of the species

Below, each of the Harmonia^{+PL} modules is revisited under the premise of the future climate. The proposed time horizon is the mid-21st century. We suggest taking into account the reports of the Intergovernmental Panel on Climate Change. Specifically, the expected changes in atmospheric variables listed in its 2013 report on the physical science basis may be used for this purpose. The global temperature is expected to rise by 1 to 2°C by 2046-2065.

Note that the answers to these questions are not used in the calculation of the overall risk score, but can be but can be considered when decisions are made about management of *the species*.

a34. INTRODUCTION – Due to climate change, the probability for *the species* to overcome geographical barriers and – if applicable – subsequent barriers of captivity or cultivation in Poland will:

X	decrease significantly decrease moderately Inot change increase moderately increase significantly						
acor	nf30.	Answer provided with a	low	medium	high X	level of confidence	
acor	nm34.	Comments:					

In Poland muskrats inhabit the whole country, it is our established species (Okarma 2011 – P, 2018 – B), therefore climate change will not affect its introduction.

a35. ESTABLISHMENT – Due to climate change, the probability for *the species* to overcome barriers that have prevented its survival and reproduction in Poland will:

decrease significantly decrease moderately X not change

increase increase	e moderately e significantly					
aconf31.	Answer provided with a	low	medium	high X	level of confidence	
acomm35.	Comments:					
	In Poland muskrats inhabit the whole country, it is our established species (Okarma 2011 - P, 2018 – B), therefore climate change will not affect this situation.					

a36. SPREAD – Due to climate change, the probability for *the species* to overcome barriers that have prevented its spread in Poland will:

X	decrease decrease not char increase increase	e significantly e moderately nge moderately significantly				
acor	nf32.	Answer provided with a	low	medium	high X	level of confidence
acor	nm36.	Comments:				

In Poland muskrats inhabit the whole country, it is our established species (Okarma 2011 – P, 2018 – B), therefore climate change will not affect its spreading.

a37. IMPACT ON THE ENVIRONMENTAL DOMAIN – Due to climate change, the consequences of *the species* on wild animals and plants, habitats and ecosystems in Poland will:

X	decrease decrease not char increase increase	e significantly e moderately nge moderately significantly				
aconf33.		Answer provided with a	low	medium X	high	level of confidence
acon	nm37.	Comments:				

Predicted climate changes will not change the scale of the species impact on wild plants and animals, as well as habitats and ecosystems in Poland, as the species already occurs throughout the country.

a38. IMPACT ON THE CULTIVATED PLANTS DOMAIN – Due to climate change, the consequences of *the species* on cultivated plants and plant domain in Poland will:

X	decrease decrease not chan increase increase	e significantly e moderately nge e moderately e significantly				
acon	f34.	Answer provided with a	low	medium X	high	level of confidence
acon	nm38.	Comments: Predicted climate changes production in Poland, sind impact on crons remains lo	will not char ce the speci-	nge the scale of t	the species rs through	impact on crops or crop out the country and its

a39. IMPACT ON THE DOMESTICATED ANIMALS DOMAIN – Due to climate change, the consequences of *the species* on domesticated animals and animal production in Poland will:

	decrease significantly					
	decrease moderately					
Х	not change					
	increase moderately					
	increase significantly					

aconf35. Answer provided with a	low	medium X	high	level of confidence
---------------------------------	-----	--------------------	------	---------------------

acomm39. Comments:

Predicted climate changes will not change the scale of the species impact on farm and domestic animals, as well as animal production in Poland, since the species already occurs throughout the country and its impact on domesticated animals and animal production remains low.

a40. IMPACT ON THE HUMAN DOMAIN – Due to climate change, the consequences of *the species* on human in Poland will:

aconf36.	Answer provided with a	low	medium X	high	level of confidence
acomm40.	Comments:				

Predicted climate changes will not change the scale of the species impact on humans in Poland. The species occurs throughout the country and probability of direct contact is low.

a41. IMPACT ON OTHER DOMAINS – Due to climate change, the consequences of *the species* on other domains in Poland will:

X	decrease significantly decrease moderately X not change increase moderately increase significantly					
aconf37.		Answer provided with a	low	medium X	high	level of confidence
acomm41.		Comments:				

Predicted climate changes will not change the scale of the species impact on other objects in Poland. The species occurs throughout the country.

Summary

Module	Score	Confidence
Introduction (questions: a06-a08)	1.00	1.00
Establishment (questions: a09-a10)	1.00	1.00
Spread (questions: a11-a12)	0.50	1.00

Environmental impact (questions: a13-a18)	0.67	1.00
Cultivated plants impact (questions: a19-a23)	0.08	1.00
Domesticated animals impact (questions: a24-a26)	0.33	1.00
Human impact (questions: a27-a29)	0.50	1.00
Other impact (questions: a30)	1.00	1.00
Invasion (questions: a06-a12)	0.83	1.00
Impact (questions: a13-a30)	1.00	1.00
Overall risk score	0.83	
Category of invasiveness	very invasive alien species	

A6 | Comments

This assessment is based on information available at the time of its completion. It has to be taken into account, however, that biological invasions are, by definition, very dynamic and unpredictable. This unpredictability includes assessing the consequences of introductions of new alien species and detecting their negative impact. As a result, the assessment of the species may change in time. For this reason it is recommended that it is regularly repeated.

Data sources

1. Published results of scientific research (P)

Ahlmann V-P. 1997. Epidemologische Untersuchung zum Vorkommen der Tollwut und des kleinen Fuchsbandwurmes, *Echinococcus multilocaris* im Saarland. Inaugural-Dissertation, Freie Universität, Berlin

Aubry JR. 1959. The muskrat in Brittany. (Le Rat musqué en Bretagne). Penn Ar Bed. 2: 10-12

Baker RH. 1983. Michigan Mammals. 642 pp. Michigan State University Press

Barends F. 2002. The Muskrat (Ondatra zibethicus): expansion and control in the Netherlands. Lutra 45: 97-104

Becker K. 1972. Muskrats in Central Europe and their control. Proceedings of the 5th Vertebrate Pest Conference 6: 18-21

Böhmer HJ, Heger T, Trepl L. 2001. Fallstudien zu gebietsfremden Arten in Deutschland – Case studies on Aliens Species in Germany. Texte des Umweltbundesamtes 13: 1-126

Bos D, Ydenberg R. 2011. Evaluation of alternative management strategies of muskrat *Ondatra zibethicus* population control using a population model. Wildlife Biology 17: 143-155

Brzeziński M, Romanowski J, Żmihorski M, Karpowicz K. 2010. Muskrat (*Ondatra zibethicus*) decline after the expansion of American mink (*Neovison vison*) in Poland. European Journal of Wildlife Research 56: 341-348 (DOI 10.1007/s10344-009-0325-9)

Burghause F. 1996. 40 Jahre Bisam in Rheinland-Pfalz. Die Bedeutung eines eingewanderten Nagers und die Bemühungen, seinen Schaden einzudämmen. Mainzer naturwiss. Archiv 34: 119-138

Connors LM, Kiviat E, Groffman PM, Ostfeld RS. 2000. Muskrat (*Ondatra zibethicus*) disturbance to vegetation and potential net nitrogen mineralization and nitrification rates in a freshwater tidal marsh. American Midland Naturalist 143: 53-63

Danell K. 1977. Short-term plant succession following the colonization of a northern Swedish lake by the muskrat, *Ondatra zibethica*. Journal of Applied Ecology 14: 933-347

Danell K. 1996. Introduction of aquatic rodents: lessons of the *Ondatra zibethicus* invasion. Widlife biology 2: 213-220

De Szalay FA, Cassidy W. 2001. Effects of Muskrat (*Ondatra zibethicus*) Lodge Construction on Invertebrate Communities in a Great Lakes Coastal Wetland. American Midland Naturalist 146: 300-310

Diemer B. 1996. Der Bisam (*Ondatra zibethicus*) in Baden-Württemberg. In: Verein der Freunde und Förderer der Akademie für Natur- und Umweltschutz (Umweltakademie) beim Ministerium für Umwelt und Verkehr Baden-Württemberg (Hrsg.), Neophyten, Neozoen – Gefahr für die heimische Natur? Beiträge der Akademie für Natur- und Umweltschutz Baden-Württemberg 22: 182-186

Gawor J, Borecka A, Malczewski A. 2008. Zarażenie lisów bąblowcem wielojamowym jako potencjalne zagrożenie dla ludzi w Polsce. Życie Weterynaryjne 83: 24-27

Gosling LM, Baker SJ. 1989. The eradication of coypus and muskrats from Britain. Biological Journal of the Linnean Society. Vol. 38: 39-51. Biological Journal of the Linnean Society 38: 39-51

Grabda J. 1954. Pasożyty wewnętrzne piżmaka (*Ondatra zibethica* L.) z okolic Bydgoszczy. Pamiętniki z III Zjazdu Polskiego Towarzystwa Parazytologicznego, 6-7 września 1952: 155-156

Hochwald S. 1990. Bestandsgefährdung seltener Muschelarten durch den Bisam (*Ondatra zibethica*). Schriftenr. Bayer. Landesamt für Umweltschutz 97: 113-114

Hoffmann M. 1958. Die Bisamratte. Ihre Lebensgewohnheiten, Verbreitung, Bekämpfung und Wirtschaftliche Bedeutung. 260 pp. Akademische Verlagsgesellshaft Geest & Portig K. G., Leipzig, Germany

Jilek R. 1977. Trematode parasites of the muskrat, *Ondatra zibethicus*, in southern Illinois. Transactions of the Illinois State Academy of Sciences 70: 105-107

Kloskowski J. 2011. Human–wildlife conflicts at pond fisheries in eastern Poland: perceptions and management of wildlife damage. European Journal of Wildlife Research 57: 295-304

Krauss M. 1990. Die Nahrung des Bisams (*Ondatra zibethicus*) an der Havel in Berlin-West und der schädigende Einfluß auf das Röhricht. Landschaftsentw. u. Umweltforschung 71: 141-181

Mazeika V, Kontenyte R, Paulauskas A. 2009. New data on the helminths of the muskrat (*Ondatra zibethicus*) in Lithuania. Estonian Journal of Ecology 58: 103-111

Mazeika V, Paulauskas A, Balciauskas L. 2003. New data on the helminth fauna of rodents of Lithuania. Acta Zoologica Lituanica 13: 41-47

McConnell PA, Powers JL. 1995. Muskrat. In: Dove L, Nyman RM. (eds.). Living Resources of the Delaware Estuary, USA. pp. 507-513. The Delaware Bay Estuary Program

Nowak E. 1971. O rozprzestrzenianiu się zwierząt i jego przyczynach. Zeszyty Naukowe Instytutu Ekologii PAN 3: 1-255

Nummi P, Väänänen VM, Malinen J. 2006. Alien grazing: indirect effects of muskrats on invertebrates. Biological Invasions 8: 993-999

Okarma H. 2011. *Ondatra zibethicus* (Linnaeus, 1766). In: Głowaciński Z, Okarma H, Pawłowski J, Solarz W. (eds.). Gatunki obce w faunie Polski. I. Przegląd i ocena stanu. pp. 444-449 Instytut Ochrony Przyrody PAN w Krakowie

Pietsch M. 1982. *Ondatra zibethicus* (Linnaeus, 1766) – Bisamratte, Bisam. – In: J. Niethammer, F. Krapp (eds.). Handbuch der Säugetiere Europas 2: 177-192

Prūsaitė J, Maeikytė R, Paua D, Pauienė N, Baleiis R, Jukaitis R, Mickus A, Gruas A, Skeiveris R, Bluzma P, Bielova O, Baranauskas K, Mačionis A, Balčiauskas L, Janulaitis Z. 1988. Fauna of Lithuania. Mammals (in Lithuanian). Mokslas Publishers, Vilnius

Ramsgaard NR. 2005. Bisamrotten (*Ondatra zibethicus*) i Danmark – Status og konsekvensanalyse af bisamrottens udbredelse i Danmark. M.Sc. thesis, University of Aarhus, Denmark

Reinhardt F, Herle VM, Bastiansen F, Streit B. 2003. Economic impact of the spread of alien species in Germany. German Federal Ministry of the Environment, Nature Conservation and Nuclear Safety. Texte 80: 43-47

Romanowski J, Karpowicz K. 2013. Zmiany w występowaniu piżmaka *Ondatra zibethicus* w centralnej i wschodniej Polsce w latach 1996-1997. Studia Ecologiae et Bioethicae 11(1): 49-61

Romig T. 1999. Vorkommen und Diagnostik von *Echinococcus multilocaris* bei Wildund Haustieren. Deutsche Tierärztliche Wochenschrift 106: 352-357

Ruys T, Lorvelec O, Marre A, Bernez I. 2011. River management and habitat characteristics of three sympatric aquatic rodents: common muskrat, coypu and European beaver European. Journal of Wildlife Research 57: 851-864

Skyriene G, Paulauskas A. 2012. Distribution of invasive muskrats (*Ondatra zibethicus*) and impact on ecosystem. Ekologija 58: 357-367

Smirnov VV, Tretyakov K. 1998. Changes in aquatic plant communitieson the island of Valaam due to invasion by the muskrat *Ondatra zibethicus* L. (Rodentia, Mammalia) Biodiversity and Conservation 7: 673 (https://doi.org/10.1023/A:1008860603166)

Smith C, Reichard M, Jurajda P, Przybylski M. 2004. The reproductive ecology of the European bitterling (*Rhodeus sericeus*) Journal of Zoology, Lond. 262: 107-124

Sokolov VE, Lavrov NP. 1993. The Muskrat. Morphology, Systematics, Ecology. 542 pp. Nauka, Moscow (in Russian)

Willner GR, Feldhamer GA, Zucker EE, Chapman JA. 1980. Ondatra zibethicus. Mammal. Species 141: 1-8

Zhou L, Fayer R, Trout JM, Ryan UM, Schaefer FW, Xiao L. 2004. Genotypes of *Cryptosporidium* Species Infecting Fur-Bearing Mammals Differ from Those of Species Infecting Humans. Microbiology 70: 7574-7577

Zimmermann U, Gorlach J, Ansteeg O, Bossneck U. 2000. Bestandsstützungsmaßnahme für die Bachmuschel (*Unio crassus*) in der Milz (Landkreis Hildburghausen). Landschaftspflege und Naturschutz in Thüringen 37: 11-16

2. Databases (B)

Birnbaum C. 2013. NOBANIS – Invasive Alien Species Fact Sheet – *Ondatra zibethicus*. – From: Online Database of the European Network on Invasive Alien Species – NOBANIS (www.nobanis.org/globalassets/speciesinfo/o/ondatra-zibethicus/ondatra_zibethicus.pdf)

Branquart E, D'aes M, Manet B, Motte G, Schockert V, Stuyck J. 2011. *Ondatra zibethicus*. Invasive species in Belgium (http://ias.biodiversity.be/species/show/28)

Genovesi P. 2006. DAISIE Alien Species Factsheet *Ondatra zibethicus* (http://www.europe-aliens.org/speciesFactsheet.do?speciesId=52887)

Okarma H. 2018. Piźmak Ondatra zibethicus (Linnaeus, 1766) (http://www.iop.krakow.pl/ssaki/Gatunek.aspx?spID=64)

Triplet P. 2015. *Ondatra zibethicus* CABI. Invasive Species Compendium. Alien Species Factsheet. (www.cabi.org/isc/datasheet/71816)

3. Unpublished data (N)

Najberek K. 2018. (in preparation). Pathogens, parasites and disease of invasive alien species of European concern

4. Other (I)

Halter DF, Blood DA, Beal AMM. 2003. Furbearer management guidelines. Muskrat. British Columbia. British Columbia (www.env.gov.bc.ca/fw/wildlife/trapping/docs/muskrat.pdf)

5. Author's own data (A)

-