
1

Specification of Standard Audit File for Tax (JPK)

service interfaces

Information Technology Center of the Ministry of Finance

23 November 2023

Version 4.1

2

Date Version Description

23.05.2016 1.3 Publication of technical specification of the Standard Audit File for Tax

services.

10.06.2016 1.4 1. Change of packed file splitting method from TAR to SPLIT binary

file splitting method.

2. Status method:

• change of returned content for http code: 200 and 400.

3. InitUploadSigned method for http code: 200

• change of type for TimeoutInSec properties from Timespan to

int

4. Change of XSD scheme of metadata file:

• adding the JPKAH (JPK ad hoc) document type for files uploaded

under the audit,

• validation of EncrypionKey name to EncryptionKey

(misspelling),

• validation of REST API version format,

• validation of file name format,

• adding total number of parts of split file and sequence number

for individual parts,

• deletion of type and mode attributes from the list of partial files

FileSignatureList,

• adding the (Packaging) element to the list of partial files

FileSignatureList with the option of selecting the type of file

split and compression. The existing options include zip

compression (deflate) with binary splitting - SplitZip element

with type (split) and mode (zip) elements,

• adding the Encryption element to the list of partial files

FileSignatureList with the option of encryption algorithm

AES256 - AES element with size (256), block (16), mode (CBC)

and padding (PKCS#7) attributes and IV (Initialization Vector)

element with bytes (16) and encoding (Base64) attributes.

17.06.2016 1.5 Change of XSD scheme of metadata file:

• specification of the supported version of REST API -

01.02.01.20160617,

• change of FileName regular expression,

• padding the response code set for the Status method.

04.07.2016 1.6 1. Adding the description for encryption key ciphering.

2. Change to the interface description – translating messages into

Polish.

3. Adding (RequestId) the request identifier to the response structure

for http code: 400 and 500.

4. Extending the error response code set (400 Bad Request) of the

InitUploadSigned method.

3

Date Version Description

5. Adding information on permissible transformations for metadata

signature.

6. Limiting of hash function value length in the XSD scheme of

metadata file.

20.07.2016 1.7 1. Extending the error response code set (400 Bad Request) of the

InitUploadSigned method.

2. Adding the examples of valid session initiation responses with the

InitUploadSigned method.

3. Placing the examples of using SDK software tools of the Put Blob

method.

4. Adding information on the parameter enabling verification of

signature with qualified certified when initiating the session with

the InitUploadSigned method in test environment.

29.07.2016 2.0 Specification of Zip compression scheme.

30.09.2016 2.1 1. Padding the the error response code set (400 Bad Request) of the

InitUploadSigned method.

2. Specification of domain addresses used in Azure Storage space.

31.01.2017 2.2 Change of examples of valid session initiation responses with the

InitUploadSigned method.

31.03.2017 2.3 1. Extending the description of metadata signature functionalities

with support for the European qualified signature and Trusted

Profile signature.

2. Extending the description of domain addresses used in Azure

Storage space.

11.05.2020 3.0 1. Extending the description of preparation of authentication

metadata with the option of using authorization data

(authorization with personal data and amount values from the

previous settlements).

2. Updating the status codes:

• adding the new code 136 returned in the InitUploadSigned

method,

• deletion of absent codes (102, 110, 301, 302, 303, 403, 404,

409, 411, 414),

• adding the new codes 417, 418, 419, 420, 422, 423, 424

returned in the Status method.

3. Adding the description of powers of attorney.

4. Extending the scope of cloud storage facilities (p. 2.2).

25.09.2020 3.1 Updating the status codes:

4

Date Version Description

• adding the new code 155 returned in the InitUploadSigned

method.

06.11.2020 3.2 Updating the status codes:

• adding the new error code 411 returned in the Status method.

21.01.2021 3.3 Adding the CUK(1) file suport.

27.05.2021 3.4 1. Adding the CUK(2) and ALK(1) files support.

2. Updating the status codes:

• adding the new error codes 99 and 101 returned in the

InitUploadSigned method,

• adding the new codes 425 and 426 returned in the Status

method.

13.01.2022

07.12.2022

16.01.2023

3.5 3. Adding the JPK_V7M(2) and JPK_V7K(2) files support.

4. Adding the ITP (1) and ITP-Z (1) files support.

5. Adding the ITP (2) and ITP-Z (2) files support.

21.06.2023 3.6 Adding the JPK_GV(1) file support.

13.10.2023 4.0 1. Adding the CESOP: PSP-IP (4) support.

2. „Block scheme of data uploading preparation steps” – adding an

optional step with document signing.

23.11.2023 4.1 1. Adding the CESOP: PSP-FR (1) support.

2. Editorial changes to the document.

5

Table of contents

1 Preparation of JPK data .. 6

1.1 File format and document type ... 6

1.2 Preparation of JPK documents ... 6

1.1.1. Data compression .. 8

1.1.2. Data encryption .. 8

1.1.3. Encryption key ciphering .. 8

1.3 Preparation of authentication metadata ... 8

1.3.1 Qualified or trusted signature .. 9

1.3.2 Authorization data .. 9

1.4 Document type ... 10

2 Specification of interface accepting the JPK documents for the clients ... 10

2.1 Introduction ... 10

2.2 Interface description .. 10

2.2.1 InitUploadSigned ... 11

2.2.2 Put Blob .. 22

2.2.3 FinishUpload ... 24

2.2.4 Status .. 26

6

1 Preparation of JPK data

1.1 File format and document type

The file format is always .xml. When an XML document is mentioned, it is understood to mean as a

type of folded document, i.e. the value of the "DocumentType" field. It should be noted that the XML

file does not have to be an XML document.

1.2 Preparation of JPK documents

The Standard Audit File for Tax (JPK) data will be prepared by the client (e.g. in the ERP system) in the

form of XML files compatible with the XSD scheme published by:

• Ministry of Finance at https://epuap.gov.pl/wps/portal/strefa-urzednika/inne-

systemy/crwde or on the official website of the JPK Structures – Ministry of Finance –

National Revenue Administration - Portal Gov.pl (www.gov.pl).

• European Commission at: https://taxation-customs.ec.europa.eu/taxation- 1/central-

electronic-system-payment-information-cesop_en.

Names of schemes published in the Central Repository of Electronic Document Models of the

Electronic Platform of Public Administration Services (ePUAP):

• JPK_V7M(1), JPK_V7M(2) MONTHLY STATEMENT AND RECORD FOR VALUE ADDED TAX (IN

THE FORM OF STANDARD AUDIT FILE FOR TAX).

• JPK_V7K(1), JPK_V7K(2) QUARTERLY STATEMENT AND RECORD FOR VALUE ADDED TAX (IN

THE FORM OF STANDARD AUDIT FILE FOR TAX).

• CUK (1), CUK (2) INFORMATION ON FOODSTUFFS FEE.

• ALK (1) INFORMATION ON FEE FOR PERMIT FOR WHOLESALE TRADING IN ALCOHOLIC

BEVERAGES OF UP TO 300 ML IN VOLUME.

• ITP (1), ITP (2), ITP-Z (1), ITP-Z (2) INFORMATION ON PAYMENT TRANSACTIONS USING

PAYMENT TERMINALS.

• JPK_GV (1) INTERNAL RECORD OF VAT GROUP MEMBERS.

In addition to the above-mentioned diagrams published in CRWDE e-PUAP, the diagrams published

on the BIP MF/KAS website are also supported:

• JPK_FA(4) VAT INVOICE (IN THE FORM OF STANDARD AUDIT FILE FOR TAX),

• JPK_FA_RR(1) VAT INVOICE FLAT-RATE FARMERS (IN THE FORM OF STANDARD AUDIT FILE

FOR TAX),

• JPK_EWP(3) REVENUE RECORDS (IN THE FORM OF STANDARD AUDIT FILE FOR TAX (3)),

• JPK_EWP(2) REVENUE RECORDS (IN THE FORM OF STANDARD AUDIT FILE FOR TAX (2)),

• JPK_EWP(1) REVENUE RECORDS (IN THE FORM OF STANDARD AUDIT FILE FOR TAX (1)),

• JPK_PKPIR(2) TAX REVENUE AND EXPENSE LEDGER (IN THE FORM OF STANDARD AUDIT FILE

FOR TAX (2)),

• JPK_KR(1) ACCOUNTING BOOKS (IN THE FORM OF STANDARD AUDIT FILE FOR TAX (1)),

7

• JPK_MAG(1) WAREHOUSE (IN THE FORM OF STANDARD AUDIT FILE FOR TAX (1)),

• JPK_WB(1) BANK STATEMENT (IN THE FORM OF STANDARD AUDIT FILE FOR TAX (1)),

• PSP-FR(1) REGISTRATION FORM FOR PAYMENT INSTITUTIONS OBLIGED TO REPORT UNDER

THE CENTRAL ELECTRONIC SYSTEM OF PAYMENT INFORMATION,

• PSP-IP(4) REPORT FROM PAYMENT INSTITUTIONS OBLIGED TO REPORT UNDER THE CENTRAL

ELECTRONIC SYSTEM OF PAYMENT INFORMATION.

Each document described with a valid scheme should constitute a separate XML file. The generated

XML file should be UTF-8 encoded. The JPK documents are prepared for uploading in line with the

scheme presented below:

Fig. 1 Block scheme of data uploading preparation steps

8

1.1.1. Data compression

The generated document will be compressed to file in ZIP format and subject to binary split to parts

not exceeding 60 MB in size.

The required compression method is the ZIP file format using the DEFLATE algorithm without the

splitting option (split/multipart). The compression should result in a single ZIP file containing a single

document. If the size of resulting ZIP file exceeds 60MB, it should be subject to binary split to

relevant number of 60MB parts and the last part of size not exceeding 60MB.

Using this approach enables the use of commonly available tools and ensures easy deployment on

various platforms.

1.1.2. Data encryption

The next stage after file zipping is their encryption. Files are encrypted with the use of AES256

algorithm with key generated by the client.

AES algorithm specification:

Key Size 256 bits / 32 bytes

Cipher Mode CBC (Cipher Block Chaining)

Padding PKCS#7

Block Size 16 bytes

Initialization Vector 16 bytes

Encryption procedure:

• Key generation: the client generates a random 256-bit key.

• Archive encryption: all segments of compressed archive (see point 1.1) are encrypted using

the abovementioned AES256 algorithm and the generated key.

• Key encryption: the key used for file encryption is then ciphered using the RSA asymmetric

algorithm. This is made with the use of public key certificate made available by the Ministry

of Finance.

• Adding key to metadata: Upon encrypting, the key is added to the metadata file described

further in the documentation.

1.1.3. Encryption key ciphering

Encryption key should be ciphered with the RSA asymmetric algorithm with the use of public key

certificate made available by the Ministry of Finance. While deploying the encryption scheme, the

following RSA algorithm specification should be used:

Key Size 256 bits / 32 bytes

Cipher Mode ECB (Electronic Codebook)

Padding PKCS#1

Block Size 256 bytes

1.3 Preparation of authentication metadata

Upon preparation of the essential documents compatible with the relevant file type scheme, the

client wishing to upload data must prepare the authentication data in the form of a dedicated XML

uploaded in the InitUploadSigned method (described in the next chapter).

The metadata file must be authenticated using one of the following techniques:

9

1. using:

a. qualified signature (Polish or European),

b. trusted signature

2. embedding the AuthData element containing the encrypted authorization data.

1.3.1 Qualified or trusted signature

The metadata file must be signed digitally with the Polish or European qualified signature or trusted

signature in line with the XAdES Basic Electronic Signature algorithm in the form of XML file in

accordance with the http://www.w3.org/2000/09/xmldsig scheme i.e. XAdES-BES in Enveloped

version (signature as an additional ds:Signature element in the original XML) or Enveloping (original

document embedded as an element in the signed structure). When signing, the signed object can be

transferred using the http://www.w3.org/2000/09/xmldsig#base64 encoding.

The hash function used for signature purposes should be RSA-SHA256.

The example of authentication metadata is available later in the document, which discusses the

InitUploadSigned method adopting the authentication metadata.

1.3.2 Authorization data

When using the amount authorization method, the AuthData element should be padded:

 <xs:element name="AuthData" minOccurs="0" maxOccurs="1">

 <xs:annotation>

 <xs:documentation>This optional field should contain the XML document compatible with

the published SIG-2008_v2-0.xsd schema encrypted with the use of AES256 symmetric algorithm.

The same key, which is used to encipher the part of the zipped JPK archive and enclosed to this

metadata file, should be used. Encrypted data encoding algorithm is Base64.</xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 </xs:element>

This field should contain the XML document compatible with the published SIG-2008_v2-0.xsd

scheme encrypted with the use of AES256 symmetric algorithm (generated by the client), The same

key, which is used to encipher the part of the zipped JPK archive and enclosed to this metadata file,

should be used. Encrypted data encoding algorithm is Base64.

Authorization data encryption parameters:

Key Size 256 bits / 32 bytes

Cipher Mode CBC (Cipher Block Chaining)

Padding PKCS#7

Block Size 16 bytes

Initialization Vector 16 bytes

10

1.4 Document type

Depending on the type of uploaded file, it must have the appropriate document type embedded in

the scheme. The following document types are available:

1. JPK for JPK, CUK, ALK and ITP files

2. JPKAH for JPK files on request

3. XML for PSP files

The document type is embedded as DocumentType, exemplary use:

“<DocumentType>JPK</DocumentType>”

2 Specification of interface accepting the JPK documents

for the clients

2.1 Introduction

The document acceptance system uses the RESTful system operating via HTTPS protocol.

2.2 Interface description

The essential part of interface for the ERP clients is structured from the following methods:

• InitUploadSigned

• Put Blob

• FinishUpload

• Status

Deployment of test environment available at:

https://test-e-dokumenty.mf.gov.pl/

The addresses of individual methods are as follows:

https://test-e-dokumenty.mf.gov.pl/api/Storage/InitUploadSigned

https://test-e-dokumenty.mf.gov.pl/api/Storage/Status/{referenceNumber}

https://test-e-dokumenty.mf.gov.pl/api/Storage/FinishUpload

Addresses of cloud storage facilities to which the JPK files are uploaded:

https://taxdocumentstorage00tst.blob.core.windows.net

https://taxdocumentstorage01tst.blob.core.windows.net

https://taxdocumentstorage02tst.blob.core.windows.net

https://taxdocumentstorage97tst.blob.core.windows.net

https://taxdocumentstorage98tst.blob.core.windows.net

https://taxdocumentstorage99tst.blob.core.windows.net

Deployment of production environment is available at:

https://e-dokumenty.mf.gov.pl/

Addresses of individual methods are as follows:

11

https://e-dokumenty.mf.gov.pl/api/Storage/InitUploadSigned

https://e-dokumenty.mf.gov.pl/api/Storage/Status/{referenceNumber}

https://e-dokumenty.mf.gov.pl/api/Storage/FinishUpload

Addresses of cloud storage facilities to which the JPK files are uploaded:

https://taxdocumentstorage00.blob.core.windows.net

https://taxdocumentstorage01.blob.core.windows.net

https://taxdocumentstorage02.blob.core.windows.net

https://taxdocumentstorage97.blob.core.windows.net

https://taxdocumentstorage98.blob.core.windows.net

https://taxdocumentstorage99.blob.core.windows.net

used domain names are verifiable using the regular expression:

https:[/]{2}taxdocumentstorage[0-9]{2}.blob.core.windows.net[/](.*)

Detailed description of the methods operation is presented below.

2.2.1 InitUploadSigned

The client session initiation method. Its call is a precondition to upload data using the Put Blob

method of the Azure service.

Name InitUploadSigned

Method type POST

Uploaded content type application/xml

Returned content type application/json

Maximum request size 100KB

Description of parameters provided in the method address:

Name Description Type Validation

enableValidateQualifiedSignature If true value is transmitted (in

test environment) the system

shall verify whether the signed

file was signed with valid Polish

or European qualified signature

or trusted signature.

bool Optional –

permissible

values: true,

false

The method address with enabled verification of qualified signature:

https://test-e-

dokumenty.mf.gov.pl/api/Storage/InitUploadSigned?enableValidateQualifiedSignature=true

Description of the XML structure being the message body:

12

Name Description Type Validation

InitUpload Metadata for the

InitUpload method

Object Required

DocumentType Name of uploaded

document type.

String Required –

permissible values:

JPK – XML

documents

compatible with

schema issued by

the Ministry of

Finance, upload on a

regular basis

JPKAH -

XML documents

compatible with

schema issued by the

Ministry of Finance

and uploaded on

request under the

audit

XML - XML

documents

compatible with

schema issued by the

entities other than

the Ministry of

Finance (for PSP-

IP(4))

Version REST API version to

which the request is

addressed

String Required,

01.02.01.20160617

Required,

01.03.01.20231001

(for PSP-IP(4))

EncryptionKey Symmetric key

encrypted with

asymmetric algorithm

(RSA)

String Required

EncryptionKey.algorithm Algorithm used to

encrypt the symmetric

key

String –

permissible

values:

RSA

Required

13

Name Description Type Validation

EncryptionKey.mode Encryption mode String –

permissible

values:

ECB

Required

EncryptionKey.padding Encryption key padding

format
String –

permissible

values:

PKCS#1

Required

EncryptionKey.encoding Key value encryption

algorithm
String –

permissible

values:

Base64

Required

DocumentList List of uploaded

documents

List of

Document

type objects

Required. The list

must include at least

one document.

Document Metadata of uploaded

document

Object Required

FormCode FormCode embedded in

the XML file heading

String Required

FormCode.systemCode systemCode attribute of

the FormCode element

of the XML file

String Required

FormCode.schemaVersion schemaVersion

attribute of the

FormCode element of

the XML file

String Required

FileName JPK file name String Required, unique,

format: [a-zA-Z0-

9_\.\-

]{5,55} for example

JPK_VAT_2016-07-

01.xml

ContentLength Total document size Long Required

HashValue Hash of the entire

document

String Required

14

Name Description Type Validation

HashValue.algorithm Name of hash function

algorithm
String –

permissible

values:

SHA-256

Required

HashValue.encoding Encoding algorithm of

the hash function value
String –

permissible

values:

Base64

Required

FileSignatureList Metadata of files

contained in the

document. If the size of

uploaded file is below

60MB, the list includes

only one file

List of

FileSignature

type objects

Required. The list

must include at

least one element

FileSignatureList.filesNumber Number of all file parts int Required

Packaging Possible types of

document splitting and

compression

Selection list Required

SplitZip Type of document

splitting and

compression

Object Required

SplitZip.type Type of method to split

a documents to parts
String –

permissible

values:

split

Required

SplitZip.mode Type of compression

algorithm
String –

permissible

values:

zip

Required

Encryption Possible partial file

encryption methods
Selection list Required

AES Partial file encryption

method
Object Required

AES.size Size of encryption key

expressed in bits
Int –

permissible

values:

256

Required

15

Name Description Type Validation

AES.block Size of encryption block

expressed in bytes
Int –

permissible

values:

16

Required

AES.mode Encryption mode String –

permissible

values:

CBC

Required

AES.padding Encryption block

padding method
String –

permissible

values:

PKCS#7

Required

IV Initialization vector of

the encryption

algorithm

String Required

IV.bytes Size of initialization

vector in bytes
String –

permissible

values:

16

Required

IV.encoding Initialization vector

value encoding method
String –

permissible

values:

Base64

Required

FileSignature File metadata Object Required

OrdinalNumber Ordinal number of the

next part
Int Required, unique

FileName Name of file uploaded

to Azure Storage.
String Required, unique,

format: [a-zA-Z0-

9_\.\-

]{5,55} for example

JPK_VAT_2016-07-

01.xml.zip.001.aes

ContentLength Length of file uploaded

to Azure Storage
Int Required.

Maximum size is

16

Name Description Type Validation

62914560 bytes

(60MB)

HashValue The hash function value

of the file uploaded to

Azure Storage, encoded

in Base64 (do not

convert to hex before

conversion to Base64)

String Required. Length:

24 characters

HashValue.algorithm Name of hash function

algorithm,
String –

permissible

values:

MD5

Required

HashValue.encoding Encoding algorithm of

hash function value
String –

permissible

values:

Base64

Required

AuthData This optional field

should contain the XML

file compatible with the

published SIG-2008_v2-

0.xsd scheme encrypted

with the use of AES256

symmetric algorithm.

The same key, which is

used to encipher the

part of the zipped JPK

archive and enclosed to

this metadata file,

should be used.

Encrypted data

encoding algorithm is

Base64.

String Optional

Hash value of file uploaded to Storage (HashValue element in FileSignatureType type) is the value of

has function in line with MDS encoded using Base64.

The XSD scheme of XML document being the request content is made available at

https://www.podatki.gov.pl/jednolity-plik-kontrolny/ in the “JPK_VAT z deklaracją” (JPK_VAT with

statement) section. This location includes the exemplary metadata signed in the XAdES-BES format

with a non-qualified (self-signed) signature.

Valid version of the XSD scheme for the CESOP project is available at:

https://www.gov.pl/web/kas/dostawcy-uslug-platniczych

17

The InitUploadSigned method returns three types of responses:

Response code Description

200 – OK Session initiated successfully

400 – Bad Request Invalid request. Erroneous service call

500 – Server Error Erroneous request processing

Description of JSON structure (application/json) of valid response (200 – OK):

Name Description Type

ReferenceNumber Initiated session identifier String

TimeoutInSec Lifetime (in seconds) of authentication

key used to upload documents (depends

on the number of files declared for

uploading)

Int

RequestToUploadFileList List of metadata used to create the

request to upload file to Azure Storage

List of

RequestToUploadFile

type objects

RequestToUploadFile Metadata used to create the request to

upload file to Azure Storage

Object

BlobName Name of blob to which the file will be

saved

String

FileName Name of file String

Url Address, to which the file will be

uploaded using the Put Blob method. The

address is generated on a dynamic basis

and its scheme may change.

String

Method The method to send the Put Blob request String

HeaderList List of headers required to create the Put

Blob request.

The returned headers are generated on a

dynamic basis. Their names and number

of elements may change.

List of keys and values

Key Header key String

Value Header value String

Exemplary content of valid response (200 - OK):

{

 "ReferenceNumber": "d4fd41850323d2f6000000b013016327",

 "TimeoutInSec": 900,

18

 "RequestToUploadFileList": [

 {

 "BlobName": "8377ed3d-1b05-4c76-b718-6fddd46fd298",

 "FileName": "jpk_vat_100-01.xml.zip.aes",

 "Url":

"https://taxdocumentstorage09tst.blob.core.windows.net/d4fd41850323d2f6000000b013016327/8

377ed3d-1b05-4c76-b718-6fddd46fd298?sv=2015-07-

08&sr=b&si=d4fd41850323d2f6000000b013016327&sig=yFXyJdsPPkbE0iQwVs5ccLEYEU0lxQHldbVy

PfPciXw%3D",

 "Method": "PUT",

 "HeaderList": [

 {

 "Key": "Content-MD5",

 "Value": "eXkPLHMM+dHB5GCFoeAvsA=="

 },

 {

 "Key": "x-ms-blob-type",

 "Value": "BlockBlob"

 }

]

 },

 {

 "BlobName": "0a80a089-bc10-41e1-a74d-70fd45f27aa3",

 "FileName": "jpk_vat_100-02.xml.zip.aes",

 "Url":

"https://taxdocumentstorage09tst.blob.core.windows.net/d4fd41850323d2f6000000b013016327/0

a80a089-bc10-41e1-a74d-70fd45f27aa3?sv=2015-07-

08&sr=b&si=d4fd41850323d2f6000000b013016327&sig=Fj%2BGjn7hCKIM6hSvMBGWBxSOyV7V%2

FLMM9pnenbaoxks%3D",

 "Method": "PUT",

 "HeaderList": [

 {

 "Key": "Content-MD5",

 "Value": "NZew85QTb16mFLzx9cyKzA=="

 },

 {

19

 "Key": "x-ms-blob-type",

 "Value": "BlockBlob"

 }

]

 }

]

}

Response for the exemplary file signed with non-qualified signature in XAdES- BES format

(enveloping) published on the website in the JPK-VAT-TEST-0001.ZIP archive:

{

 "ReferenceNumber": " ef7d17780087346e0000004c0c7982ec",

 "TimeoutInSec": 900,

 "RequestToUploadFileList": [

 {

 "BlobName": "094951bc-ba54-404e-b2c8-df2591ad0e17",

 "FileName": "JPK-VAT-TEST-0001.xml.zip.aes",

 "Url":

"https://taxdocumentstorage03tst.blob.core.windows.net/ef7d17780087346e0000004c0c7982ec/0

94951bc-ba54-404e-b2c8-df2591ad0e17?sv=2015-07-

08&sr=b&si=ef7d17780087346e0000004c0c7982ec&sig=kN7LlprYkIP9uxod%2F1gcaDGN8WjbEbfDIA

4GXuuzOmk%3D",

 "Method": "PUT",

 "HeaderList": [

 { "Key": "Content-MD5", "Value": "5YnivEH4gz5Wg5E8M2XwAQ==" },

 { "Key": "x-ms-blob-type","Value": "BlockBlob" }

]

 }

]

}

Response for the exemplary file signed with non-qualified signature in XAdES- BES (enveloped)

format, published on the website in the JPK-VAT-TEST-0000.ZIP archive:

{

 "ReferenceNumber": " ef81ecf9011a546c0000004d72be8011",

 "TimeoutInSec": 900,

 "RequestToUploadFileList": [

20

 {

 "BlobName": "55a19799-5f1d-4336-9051-197dc53e5adf",

 "FileName": "JPK-VAT-TEST-0001.xml.zip.aes",

 "Url":

"https://taxdocumentstorage02tst.blob.core.windows.net/ef81ecf9011a546c0000004d72be8011/55

a19799-5f1d-4336-9051-197dc53e5adf?sv=2015-07-

08&sr=b&si=ef81ecf9011a546c0000004d72be8011&sig=HeLYQd8RfRucs4KGgWxITEU36OgQuqSe1R

UXZ10n8%2Bs%3D",

 "Method": "PUT",

 "HeaderList": [

 { "Key": "Content-MD5", "Value": "5YnivEH4gz5Wg5E8M2XwAQ=="},

 { "Key": "x-ms-blob-type", "Value": "BlockBlob" }

]

 }

]

}

Description of JSON structure (application/json) of response (400 – Bad Request):

Name Description Type

Message Error message String

Code Error code String

Errors Optionally. Error table String list

RequestId Unique bad request identifier GUID

Specification of codes embedded in response (400 – Bad Request):

Code Message Description

99 Invalid character encoding in the xml file The provided document is not encoded

in UTF-8 format

100 Invalid XML The provided document is not the XML

document

101 Invalid character encoding declaration in the

xml file

The provided document has invalid

character encoding declaration (other

than <?xml version="1.0"

encoding="utf-8"?>)

110 Document not signed The provided document is not signed

as required by the specification

111 Signature in the other format than XAdES-BES

21

Code Message Description

112 Invalid signature. Verification impossible. Unexpected error occurred during

signature verification.

113 Signature in non-supported external

(detached) format

The supported signature formats are

enveloped and enveloping

114 Difficulties with reading the signed object

120 Signature verified negatively Positive verification of signature failed.

130 Signature references verified negatively. Data

probably modified.

135 Document with non-qualified signature Authenticity of qualified signature

verified in the production

environment.

136 Document contains both electronic signature

and authorization data

The document may be authenticated

using only one technique

140 Uploaded filed incompatible with XSD scheme Verification document using the

InitUpload.xsd scheme failed

150 Non-supported form code:

 “specific systemCode”

Non-supported form code

155 Uploaded file is invalid. At least two partial
files of the same hash declared.

The error consists in declaration in the

initupload file of at least two partial

files of the same hash.

160 “Specific HashValue” value is not encoded in
Base64

Hash of files declared for uploading

must be encoded in Base64.

170 Duplicate of processed document uploaded.
Reference number of the original document:
XXXXXXXX

Duplicates are verified on the basis of

the SHA-256 hash value of the declared

JPK document

Exemplary response:

{

 "Message": "Signature verified negatively",

 "Code": 120,

 "RequestId": "172dc3cc-5b97-48de-91dd-6903587cba19"

}

Description of JSON structure (application/json) of response (500 – Internal Server Error):

Name Description Type

Message Error message String

RequestId Unique bad request identifier GUID

22

Exemplary response:

{

 "Message": "Internal system error ",

 "RequestId": "172dc3cc-5b97-48de-91dd-6903587cba19"

}

2.2.2 Put Blob

The method uploading the essential JPK documents. Directly deployed by the storage space service

by Azure (Azure Storage).

Its complete documentation is available at:

https://learn.microsoft.com/en-us/rest/api/storageservices/Put-Blob

Uploading via http client

Request address:

https://<storage_account_name>.blob.core.windows.net/<reference_number>/<blob_name>

Complete address at which the client uploads the JPK documents is returned by the InitUploadSigned

method. The Shared Access Signature i.e. the one-time key enabling the client to place documents in

the dedicated container is a part of the returned address. The SAS key is generated on a one-time

basis and valid for a predefined time and in the predefined part of space of Azure Storage – thus

provides high security level.

Request method:

Returned by InitUploadSigned.

Request header

Returned by InitUploadSigned. Used request headers:

Request header Description

x-ms-blob-type Required. Specifies the type of blob. Permissible value is BlockBlob.

Content-MD5 Optional. MD5 has function value. This hash is used to verify data integrity

during transfer. While using this value, Azure Storage automatically verifies

the hash value of data received with the declared ones. If both values

differ, the procedure fails with error code 400 (Bad Request).

Request content

The request content contains the uploaded file.

Complete documentation on request headers – and other details of interaction with Azure Storage

– is available at already provided address:

https://msdn.microsoft.com/en-us/library/azure/dd179451.aspx

The Put Blob method returns the following responses:

23

Response code Description

201 – Created File successfully uploaded in Azure space.

4xx Erroneous service call

5xx Erroneous request processing

Response (201 – Created):

Empty response body

Responses 4xx and 5xx return the error message in XML form (application/xml):

Name Description Type

Error Key structural element Object

Code Descriptive error code String

Message Error message String

Example:

<?xml version="1.0" encoding="utf-8"?>

<Error>

 <Code>AuthenticationFailed</Code>

 <Message>Server failed to authenticate the request. Make sure the value of Authorization header

is formed correctly including the signature.

RequestId:a5124e1c-0001-0056-06b3-ddc62c000000 Time:2016-07-

14T09:40:13.7833645Z</Message>

 <AuthenticationErrorDetail>SAS identifier cannot be found for specified signed

identifier</AuthenticationErrorDetail>

</Error>

Uploading via SDK

Available deployments: .NET, Node.js, Java, C++, PHP, Ruby, Python, iOS, Xamarin.

https://azure.microsoft.com/en-gb/documentation/articles/storage-dotnet-how-to-use-blobs/

Example:

Message returned by InitUploadSigned:

{

 "ReferenceNumber": "d8cb2f0f014381ab000000b012f8a3d6",

 "TimeoutInSec": 900,

 "RequestToUploadFileList": [

 {

 "BlobName": "b42748d3-0660-4d81-afc2-3c250fbcdbef",

24

 "FileName": "jpk_vat_100.xml.zip.aes",

 "Url":

"https://taxdocumentstorage10tst.blob.core.windows.net/d8cb2f0f014381ab000000b012f8a3d6/b4

2748d3-0660-4d81-afc2-3c250fbcdbef?sv=2015-07-

08&sr=b&si=d8cb2f0f014381ab000000b012f8a3d6&sig=2y%2BZ3cjcyBbBnCM6Mw9a4EPN2KA%2B0

1kgf9fro%2FK6Xgw%3D",

 "Method": "PUT",

 "HeaderList": [

 { "Key": "Content-MD5", "Value": "eXkPLHMM+dHB5GCFoeAvsA==" },

 { "Key": "x-ms-blob-type", "Value": "BlockBlob" }

]

 }

]

}

Uploading file in.NET:

var absoluteUri =

"https://taxdocumentstorage10tst.blob.core.windows.net/d8cb2f0f014381ab000000b012f8a3d6/b4

2748d3-0660-4d81-afc2-3c250fbcdbef";

var sas = "sv=2015-07-

08&sr=b&si=d8cb2f0f014381ab000000b012f8a3d6&sig=2y%2BZ3cjcyBbBnCM6Mw9a4EPN2KA%2B0

1kgf9fro% 2FK6Xgw%3D";

var blob = new CloudBlockBlob(new Uri(absoluteUri), new StorageCredentials(sas)); using (var

stream = new FileStream("jpk_vat_100-01.xml.zip.aes", FileMode.Open))

{

blob.UploadFromStream(stream);

}

2.2.3 FinishUpload

This method ends the session. Its call is a precondition for successful completion of the uploading

procedure. It verifies the required files, using the name and MD5 of the values declared in

InitUploadSigned. Failure to call is equivalent to the recognition that the session is interrupted.

Name FinishUpload

Method type POST

Uploaded content type application/json

Returned content type application/json

Maximum request size 100KB

25

Description of JSON (application/json) structure being the message body:

Name Description Type Validation

ReferenceNumber Session identifier String Required

AzureBlobNameList List of names of

blobs contained in

Azure Storage

String list Required. The list must

contain the same number

of elements that was

uploaded to Azure

Storage

Example:

{

 "ReferenceNumber": "e8505c4703e5fd5b000000b04bc6f43f"

 "AzureBlobNameList": [

 "d1eadd0e-ccd5-44ab-85e7-2f2a552e7f17",

 "5c3ceb5f-8c5d-4720-9005-7c7d1d88f121"

],

}

The FinishUpload method returns three types of responses:

Response code Description

200 – OK Session completed successfully

400 – Bad Request Invalid request. Erroneous service call

500 – Server Error Erroneous request processing

Response (200 – OK):

Empty response body

Description of JSON (application/json) response (400 – Bad Request):

Name Description Type

Message Error message String

Errors Optionally. Error table String list

RequestId Unique bad request identifier GUID

Example:

{

26

 "Message": "Bad request"

 "Errors": "[‘Reference number is required]"

 "RequestId": "172dc3cc-5b97-48de-91dd-6903587cba19"

}

Description of JSON (application/json) response (500 – Internal Server Error):

Name Description Type

Message Error message String

RequestId Optionally. Error table GUID

Example:

{

 "Message": "Internal server error",

 "RequestId": "172dc3cc-5b97-48de-91dd-6903587cba19"

}

2.2.4 Status

The method returns the Official Confirmation of Receipt of uploaded documents. This method is a

part of API for the clients, available at the level of the same service as the other methods.

Name Status

Method type GET

Uploaded content type Query String

Returned content type application/json

Maximum request size 100KB

Format Status/ba96951d00635700000001726b6ec621

Description of uploaded parameter:

Name Description Type Validation

ReferenceNumber Reference Number – Session identifier String Required

The Status method returns three types of responses:

Response code Description

200 – OK Confirmation returned successfully

400 – Bad Request Erroneous request. Erroneous service call

500 – Server Error Erroneous request processing

27

Description of JSON (application/json) structure of valid response (200 – OK):

Name Description Type

Code Status code String

Description Description String

Details Event details String

Upo Optionally. Official confirmation of receipt String

Timestamp Time stamp Datetime

Example:

{

 "Code": 300,

 "Description": "Invalid reference number",

 "Upo": ""

 "Details": ""

 "Timestamp": "2016-06-17T09:37:40.773976+00:00"

}

List of statuses:

The table below presents the status codes and their descriptions returned in a valid response using

the Status method. The statuses are grouped as follows:

1xx – Codes specifying the session status situations (e.g. initiated, expired)

2xx – Codes specifying successful completion of document processing

3xx – Codes informing on the document processing stage

4xx – Codes specifying failed completion of document processing

Status code Description

100 File uploading session initiated

101 X of Y declared files received

120 Session completed successfully. Data saved correctly. Document verification in

progress

200 Document processing completed successfully, download UPO

300 Invalid reference number

28

Status code Description

401 Verification negative – document incompatible with the XSD scheme

405 Document with revoked certificate

406 Document with certificate with non-supported provider

407 Document duplicate uploaded. Reference number of the original document is
XXXXXXXX

408 Document contains errors preventing its processing

410 Uploaded files are not valid ZIP archive

411 Verification negative – identical document is already uploaded in the system

412 Document encryption invalid

413 Document checksum incompatible with the declared value

415 Uploaded document type is not supported by the system

417 Document encryption invalid. Authorization data decryption error

418 Verification negative – authorization data incompatible with the XSD scheme

419 Verification negative – authorization data error

420 No valid power of attorney/authorisation to sign document

422 Verification negative – document uploaded with the use of authorization data may

be sent only by a tax payer being a natural person

423 Document with a certificate having no required attributes

424 Verification negative – document cannot be signed with the use of authorization

data

425 Verification negative – inconsistent data

426 Invalid character encoding in authorization data

427 Document with certificate with invalid URL

428 Business rules validation error

430 Document with invalid signature

29

Description of JSON (application/json) response (400 – Bad Request):

Name Description Type

Message Error message String

Errors Optionally. Error table String list

RequestId Unique bad request identifier GUID

Example:

{

 "Message": "Bad request",

 "RequestId": "172dc3cc-5b97-48de-91dd-6903587cba19"

}

Description of JSON (application/json) response (500 – Internal Server Error):

Name Description Type

Message Error message String

RequestId Unique bad request identifier GUID

Example:

{

 "Message": "Internal system error",

 "RequestId": "172dc3cc-5b97-48de-91dd-6903587cba19"

}

