

POLSKA AKADEMIA NAUK INSTYTUT PODSTAWOWYCH PROBLEMÓW TECHNIKI

ul. Pawińskiego 5 B, 02-106 Warszawa

Diagnostyka betonu w nawierzchni drogi S8 Wolbórz-Polichno na podstawie badań odwiertów

Opracowanie dla Generalnej Dyrekcji Dróg Krajowych i Autostrad – Departament Studiów do użytku wewnętrznego. Badania przeprowadzone w ramach Zadania 7 Projektu:

REAKTYWNOŚĆ ALKALICZNA KRAJOWYCH KRUSZYW DZP/RID-I-37/6/NCBR/2016

Zespół autorski:

Prof. dr hab. inż. Michał A. Glinicki (kierownik) Mgr inż. Aneta Antolik Dr inż. Mariusz Dąbrowski Mgr. inż. Kinga Dziedzic Mgr. inż. Karolina Gibas Dr hab. inż. Daria Jóźwiak-Niedźwiedzka Techn. Maciej Sobczak

Moundi

Warszawa, 10.09.2018 r.

Streszczenie merytoryczne

Badania diagnostyczne przeprowadzono na próbkach odwierconych z nawierzchni S8 na odcinku Wolbórz-Polichno, eksploatowanym przez około 15 lat. Najważniejsze obserwacje i wyniki pomiarów zestawiono poniżej:

Lp	Występujące zjawisko i charakterystyka	Szczegółowe dowody
1	Liczne spękania ziaren kruszywa grubego kwarcytowego i	Analiza makroskopowa
	zaczynu cementowego. Stopień zarysowania betonu w	(rozdz.2), analiza
	przekroju 0,18 mm/mm ² i 0,13 mm/mm ² odpowiednio w	cienkich szlifów
	próbkach z pasa ruchu wolnego i pasa awaryjnego.	(rozdz.3)
2	Obfitość reaktywnych form kwarcu w kruszywie	Analiza cienkich
	kwarcytowym: kwarcu mikrokrystalicznego <63 μm i	szlifów (rozdz.3)
	kryptokrystalicznego.	
3	Występowanie żelu ASR w spękaniach w ziarnach kruszywa	Analiza cienkich
	kwarcytowego i w zaczynie oraz w porach zaczynu. Ciągłość	szlifów (rozdz.3)
	występowania żelu wskazuje na kierunek jego powstawania.	
4	W składzie żelu ASR występuje głównie Si, K, Na, Ca;	Mikroskopia SEM z
	stosunek K/Si, Na/Si oraz Ca/Si wynosi 0,23; 0,07 i 0,67.	mikroanalizą EDS
	Skład żelu jest typowy, jego zróżnicowanie jest skorelowane	(rozdz.4)
	w odległością od granicy reaktywnych ziaren.	
5	Rezonansowy moduł sprężystości próbek betonu wynosi ok.	Pomiary właściwości
	18 GPa. Odpowiada to oszacowanej redukcji wyjściowego	sprężystych (rozdz.5)
	modułu co najmniej 50%.	
6	Pęcznienie próbek eksponowanych na działanie środowiska	Obserwacje wydzieliny
	promującego reakcję ASR wskazuje na potencjał dalszego	ze spękań i pomiary
	rozwoju reakcji alkalia-kruszywo. Stwierdzono intensywne	(rozdz 6)
	wydzieliny ze spękań i odpryski ziaren kwarcytu.	
7	Wydłużenie próbek z kruszywem kwarcytowym z tego	Pomiar ekspansji próbek
	samego złoża wskazuje na silną reaktywność kruszywa -	zaprawy z kwarcytem
	"R2" według klasyfikacji RILEM/ASTM.	(IOZUZ.7)
8	Charakterystyka porów powietrznych w betonie świadczy o	Pomiary charakterystyki
	zróżnicowanym napowietrzeniu, niekiedy poniżej	porow (rozdz.8)
	oczekiwanych parametrow zawartości i rozkładu wielkości	
0	porow.	
9	Porowatosc otwarta betonu wynosi 10-12 %. Szybkość	Pomiary porowatości
	absorpcji wody wynosi ok. 6·10 ⁻⁴ mm/s ^{1/2} . Wyniki wskazują	absorncji wody
	na niewielką przepuszczalność betonu w probkach.	(rozdz.9)

W konkluzji stwierdzamy, że w próbkach-odwiertach z nawierzchni bez wyjątku występują ślady intensywnie ekspansywnej reakcji alkalia-kruszywo, zachodzącej między reaktywnymi formami minerałów w ziarnach kruszywa kwarcytowego i zaczynem cementowym. Reakcja alkalia-kruszywo kwarcytowe jest główną z przyczyn znacznego uszkodzenia (spękania) betonu w odwiertach. Rolę dodatkowych czynników niszczących, takich jak oddziaływanie obciążenia ruchem pojazdów, wskazują większe spękania na pasie ruchu wolnego w porównaniu do pasa awaryjnego. W obszarach marginalnego napowietrzenia betonu dodatkowym czynnikiem niszczącym mogła być agresja mrozu i środków odladzających.

Spis treści

- 1. Wprowadzenie
 - 1.1. Przedmiot, cel i zakres opracowania
 - 1.2. Opis odwiertów i dane archiwalne dotyczące nawierzchni drogi
 - 1.3. Program badań
- 2. Wyniki analizy makroskopowej betonu
- 3. Wyniki analizy cienkich szlifów metodą mikroskopii optycznej
- 4. Wyniki analizy zgładów metodą mikroskopii skaningowej z EDS
- 5. Wyniki pomiarów właściwości sprężystych próbek betonu
- 6. Obserwacje wydzieliny ze spękań i pomiary ekspansji próbek betonu
- 7. Wyniki pomiaru ekspansji próbek zaprawy z kruszywem kwarcytowym
- 8. Wyniki pomiarów charakterystyki porów w próbkach betonu
- 9. Wyniki pomiaru porowatości otwartej betonu i szybkości absorpcji wody
- 10. Synteza wyników i wnioski
- 11. Wykaz norm i dokumentów związanych

Załączniki:

- Załącznik 1. Pismo z Departamentu Studiów GDDKiA w sprawie odwiertów
- Załącznik 2. Skład i właściwości betonu nawierzchniowego według danych archiwalnych
- Załącznik 3. Widok przekazanych odwiertów i wyniki analizy makroskopowej betonu
- Załącznik 4. Wyniki cyfrowej analizy cienkich szlifów z betonu nawierzchniowego
- Załącznik 5. Zestawienie przeprowadzonych analiz SEM-EDS
- Załącznik 6. Wyniki pomiarów charakterystyki porów w betonie w odwiertach

1.Wprowadzenie

1.1.Przedmiot, cel i zakres opracowania

Przedmiotem opracowania są właściwości betonu w nawierzchni drogi ekspresowej S8 na odcinku Wolbórz-Polichno. Celem pracy jest ocena właściwości betonu nawierzchniowego na podstawie badań odwiertów pobranych z przedmiotowego odcinka drogi przy zastosowaniu metod diagnostycznych IPPT PAN, rozwiniętych w ramach Projektu RID I-37. Praca stanowi fragment Zadania 7 Projektu RID I-37 realizowanego w ramach programu Rozwój Innowacji Drogowych, współfinansowanego przez NCBiR i GDDKiA. Włączenie pracy do zakresu Zadania 7 odbyło się na podstawie pisma w Załączniku 1.

Powodem podjęcia badań betonu w nawierzchni były spękania widoczne na powierzchni jezdni. Zakres badań obejmuje 10 odwiertów pobranych w dniach 14-15 czerwca 2018 przez Laboratorium Drogowe GDDKiA O/Łódź.

1.2. Opis odwiertów i dane archiwalne dotyczące nawierzchni drogi

Przekazane próbki-odwierty o średnicy ok. 100 mm pobrane zostały w następujących miejscach na drodze S8:

Numer odwiertu	Kilometraż, jezdnia, pas
1	339+200, jezdnja lewa, pas awarviny
2	338+870, jezdnia lewa, pas wolny
3	336+180, jezdnia lewa, pas awarviny
4	335+900, jezdnia lewa, pas awaryjny
5	336+160, jezdnia lewa, pas wolny
6	334+650, jezdnia prawa, pas awaryjny
7	335+600, jezdnia prawa, pas awaryjny
8	336+100, jezdnia prawa, pas wolny
9	336+755, jezdnia prawa, pas wolny
10	337+170, jezdnia prawa, pas wolny

Przy wyborze miejsc poboru próbek kierowano się występowaniem spękań widocznych na powierzchni jezdni. Na Rys.1.1 przedstawiono fotografie powierzchni w kilku miejscach, na których widać siatkę spękań. Zaobserwowane spękania powierzchni sugerują możliwość występowania szkodliwej reakcji alkalia-kruszywo, dlatego zakres badań obejmuje m.in. diagnostykę pod kątem reaktywności kruszywa i ewentualnych śladów reakcji. Odwierty pobierano także w miejscach, gdzie nie były wyraźnie widoczne spękania powierzchniowe oraz w miejscach występowania znacznej rysy widocznej na powierzchni.

Archiwalne dane o składzie i właściwościach betonu stosowanego do budowy odcinka nawierzchni drogowej w latach 2002-2003 znane są ze sprawozdania IBDiM [1] z roku 2004. Odpowiednie fragmenty sprawozdania zamieszczono w Załączniku 2. Beton nawierzchniowy wykonano z następujących zasadniczych składników:

- cement portlandzki CEM I 32,5 R "Rudniki",

- piasek płukany 0/2 mm "Stobiecko",

- grys amfibolitowy 2/8 mm "Ogorzelec",

- grys amfibolitowy 8/16 mm "Ogorzelec",

- grys kwarcytowy 16/31,5 mm "Wiśniówka".

Właściwości składników spełniały wymagania ówczesnych SST.

Rys.1.1. Widok spękań powierzchni drogi S8 w tych miejscach, w których pobrano próbki odwierty (zdjęcia wykonane i udostępnione przez Laboratorium Drogowe GDDKiA O/Łódź)

Rys.1.2. Widok zestawu pobranych odwiertów z nawierzchni

1.3. Program badań

Do oceny właściwości betonu nawierzchniowego w odwiertach, a zwłaszcza do rozpoznania ewentualnego występowania reakcji alkalia-kruszywo oraz kluczowych cech mikrostruktury betonu zastosowano metodykę badań dostępnych w laboratorium IPPT PAN. Sposób diagnozowania reakcji alkalia-kruszywo opiera się przede wszystkim na raporcie Amerykańskiej Federalnej Agencji Autostradowej FHWA HIF-09-004 [2].

Program badań diagnostycznych przedstawiono w Tablicy 1.1. Program obejmuje przede wszystkim rozpoznanie minerałów i śladów reakcji alkalia-kruszywo, a także diagnostykę stopnia zniszczenia wewnętrznego betonu i wstępne prognozowanie dalszego przebiegu zmian właściwości betonu. Za pomocą piły diamentowej z dostarczonych odwiertów wycięto odpowiednie próbki do badań mikroskopowych i badań właściwości fizycznych. Najbardziej zniszczone kawałki betonu rozpadły się podczas cięcia. Obserwacje mikroskopowe prowadzone były na pionowych przekrojach nawierzchni. Poza badaniem betonu w odwiertach przeprowadzono uzupełniające badania reaktywności kruszywa kwarcytowego, pochodzącego z tego samego złoża, z którego pochodziło kruszywo stosowane do budowy odcinka nawierzchni.

Rodzaj badania	Próbki z odwiertu
1. Malwadianawa analiza batany (analiza iadnawadnaści warldady ziewani -	(µds)
1. Makroskopowa analiza belonu (analiza jednorodności rozkładu zlaren i	3,4,5,6,7,8,10
występowania spękań na przekrojach odwiertów)	
2. Analiza cienkich szlifów metodą mikroskopii optycznej (rozpoznanie	3, 7 (awaryjny)
minerałów reaktywnych w ziarnach kruszywa, ilościowy opis spękań,	5,8,10 (wolny)
rozpoznanie żelu ASR)	
3. Analiza zgładów metodą mikroskopii skaningowej z mikroanalizą EDS	3,6,7 (awaryjny)
(rozpoznanie żelu ASR, identyfikacja składu żelu w mikroobszarach)	5,8,10 (wolny)
4. Pomiary właściwości sprężystych próbek betonu	5,6,7
(oszacowanie rezonansowego modułu sprężystości)	
5. Obserwacje wydzieliny ze spękań i pomiary ekspansji próbek betonu	5,6,7
(rozpoznanie potencjału dalszego występowania reakcji)	
6. Pomiary ekspansji próbek zaprawy z kruszywem kwarcytowym	-
(rozpoznanie reaktywności kruszywa pochodzącego z tego samego złoża)	(próbki dodatkowe)
7. Pomiary charakterystyki porów w próbkach betonu	5,8,10
(rozpoznanie związanych cech mikrostruktury betonu)	
8. Pomiary porowatości otwartej betonu i szybkości absorbcji wody	1,4
(rozpoznanie związanych właściwości fizycznych betonu)	

Tablica 1.1. Program badań betonu w próbkach i badań uzupełniających

2. Wyniki analizy makroskopowej betonu

Analizę makroskopową betonu została wykonana według procedury własnej IPPT PAN. Z odwiertów walcowych przygotowano próbki do analizy poprzez przecięcie walca w środku (wzdłuż wysokości), prostopadle do powierzchni jezdni. Obserwacjom makroskopowym poddana została każdorazowo jedna połowa z wyszczególnieniem części górnej i dolnej przekroju próbki. Dokumentację fotograficzną oraz wyniki analizy makroskopowej betonu podano w Załączniku 3.

W przekrojach próbek betonu stwierdzono występowanie kruszywa grubego –łamanego, o wielokątnym kształcie ziaren. Zawartość objętościowa ziaren kruszywa grubego mieściła się w granicach 50 - 55% w części górnej oraz 46 - 56% w części dolnej. Ziarna rozmieszczone były równomiernie w całym przekroju. Stwierdzono wyraźnie widoczne spękania jasnych ziaren kruszywa grubego. W spękaniach oraz dużych porach powietrznych widoczny jest biały żel.

Zawartość dużych pustek powietrznych (o średnicy powyżej 2 mm) w górnej części rdzenia wynosiła maksymalnie 1,8% oraz 2,8% w części dolnej, z wyjątkiem próbek o numerach 3 i 5, w których stwierdzono zwiększoną zawartość pustek powietrznych w dolnej części rdzenia (do 23,8%). We wszystkich analizowanych przekrojach zauważono duże rysy równoległe do powierzchni jezdni przechodzące zarówno przez matrycę, jak i kruszywo grube (na głębokości od 50 do 200 mm od powierzchni jezdni).

Wyniki analizy makroskopowej betonu w próbkach wskazują na jednorodne rozmieszczenie ziaren kruszywa, a co za tym idzie brak znaczącej segregacji kruszywa. Zwiększona zawartość dużych pustek powietrznych, zwłaszcza w dolnej części niektórych odwiertów, świadczy o niedostatecznym zawibrowaniu mieszanki w momencie wbudowywania. Liczne spękania w ziarnach kruszywa grubego oraz obecność białego żelu w rysach i porach, sugerują obecność reakcji alkalia- kruszywo w badanym betonie. Spękania betonu w przekroju odwiertów były wyraźna widoczne nawet w przypadku nieznacznych spękań powierzchni odwiertu (jezdni).

3. Wyniki analizy cienkich szlifów metodą mikroskopii optycznej

Metoda badania:

- zgodna z AAR-1 [3], ASTM C295 [4], ASTM C856 [5],

- próbki: cienkie szlify o wymiarach 25x45 mm i grubości 20 mikrometrów, wycięte z pięciu odwiertów, oznaczone 3A, 5A, 7A, 8A, 10A (z górnej 50 mm warstwy),

-aparatura pomiarowa: mikroskop stereoskopowy polaryzacyjny Olympus BX 51, automatyczny stolik skaningowy Prior, oprogramowanie analySIS AUTO. Obserwacje prowadzono w świetle przechodzącym przy równoległych polaryzatorach (PPL), skrzyżowanych polaryzatorach (XPL), także z płytką gipsową (XPL_G) oraz w świetle ultrafioletowym (UV).

<u>Metoda ilościowego oszacowania zawartości kwarcu kryptokrystalicznego</u> (poniżej 4 μ m) w ziarnach kwarcytu: na podstawie cyfrowej analizy zebranych obrazów ziaren na cienkich szlifach przy skrzyżowanych polaryzatorach z płytką gipsową, po zastosowaniu przekształceń morfologicznych obrazu w celu wyróżnienia wielkości ziaren. Do analizy cyfrowej wybrano fragmenty ziaren kruszywa kwarcytowego o wymiarach co najmniej 8x5 mm, w których zmieściłyby się min. 8 obrazów analizowanych przy powiększeniu 40x (1 piksel = 0,85 μ m), lub 100x (1 piksel = 0,34 μ m). Obrazy wybrane do analizy zawierały jedynie kruszywo kwarcytowe, bez otaczającej matrycy cementowej i rys z kruszywie.

Do oceny wielkości ziarn kwarcu przyjęto następujące granice:

- kwarc mikrokrystaliczny odpowiada ziarnom SiO_2 od 4 do 62 μm

- kwarc kryptokrystaliczny, ziarna SiO₂ poniżej 4 μm.

Szczegółowe objaśnienie i wyniki w Załączniku 4.

W wyniku przeprowadzonej analizy mikroskopowej stwierdzono występowanie w betonie:

- ziaren grubego kruszywa kwarcytowego (Rys.3.1) oraz amfibolitowego (Rys.3.2),

- ziaren drobnego kruszywa piasku kwarcowego zawierającego również ziarna wapienne, Rys. 3.3,
- pojedynczych ziarna mułowca w kruszywie grubym, Rys.3.4,
- częściowego wypełnienia pustek powietrznych w zaczynie produktami hydratacji cementu (zwłaszcza ettryngitem),
- żelu w ziarnach kruszywa kwarcytowego i w zaczynie cementowym w ich otoczeniu; brak występowania żelu w ziarnach kruszywa amfibolitowego i w ziarnach piasku.

Analiza petrograficzna ziaren kruszywa na cienkich szlifach wykazała, że:

- ziarna kruszywa kwarcytowego różnią się wielkością kryształów kwarcu, Rys. 3.5,
- w ziarnach kruszywa kwarcytowego występuje mikro- i kryptokrystaliczny kwarc¹,
- jedynie ziarna kwarcytu zawierające mikro- i kryptokrystaliczny kwarc wykazały podatność na reakcję alkaliczną, ujawniającą się występowaniem spękań i i żelu, Rys. 3.6.
- Oszacowanie zawartości ziaren kwarcu poniżej 4 µm, na podstawie pomiarów udokumentowanych w Załączniku 4, pozwala sformułować następujące stwierdzenia:
- ziarna kruszywa kwarcytowego wykazujące podatność na ASR zawierały powyżej 10 % kwarcu o wymiarach poniżej 4µm,
- ziarna kruszywa kwarcytowego niewykazujące podatności na ASR zawierały poniżej 7% ziaren kwarcu o wymiarach poniżej 4µm.

Szczegółowa analiza występowania żelu wykazała, że:

- we wszystkich analizowanych próbkach betonu (zarówno z odwiertów z pasa wolnego, jak i z pasa awaryjnego) stwierdzono obfitość występowania żelu, będącego wynikiem reakcji alkalia- kruszywo w betonie, Rys. 3.7,
- żel był obecny w spękanych ziarnach kruszywa kwarcytowego; zaobserwowano ciągłość żelu wypełniającego spękania w kruszywie i spękania w otaczającym zaczynie cementowym, Rys. 3.8, 3.9,
- żel częściowo lub całkowicie wypełniał też pustki powietrzne, zwłaszcza pustki o średnicy do ok. 200 μm, Rys.3.10.

Szczegółowa analiza rozmiarów występujących spękań wykazała, że:

- -rysy w matrycy cementowej wypełnione żelem ASR mają szerokość około 60÷120 μm, Rys. 3.11,
- rysy w ziarnach kruszywa kwarcytowego mają szerokość ok. 40-80 μm mniejsze rysy, 250-350 μm – główna rysa, Rys. 3.12.
- Porównując występowanie żelu i stopień zarysowania w próbkach z odwiertów pobranych z różnych pasów jezdni, stwierdzono że:
- szersze rysy, zarówno w matrycy cementowej, jak i w kruszywie kwarcytowym, występowały w próbkach 5A, 8A i 10A w porównaniu do próbek 3A i 7A, Rys. 3.11, 3.12,
- w próbkach 5A, 8A i 10A stwierdzono większy stopień wypełnienia pustek powietrznych żelem ASR w porównaniu do próbek 3A i 7A, Rys. 3.10.

¹ Na podstawie literatury przyjmuje się następujące określenia: kwarc mikrokrystaliczny – ziarna wielkości 4μm–62μm; kwarc kryptokrystaliczny - ziarna < 4μm, gdy tekstura jest zbyt drobna, aby można było ją rozdzielić za pomocą mikroskopu petrograficznego

Rys. 3.1. Kruszywo grube: kwarcyt (PPL, XPL)

Rys. 3.2. Kruszywo grube: amfibolit (PPL, XPL)

Rys. 3.3. Kruszywo drobne: ziarna piasku kwarcowego (1) z widocznymi ziarnami wapiennymi (2) (PPL, XPL)

Rys. 3.4. Mułowiec – ziarno kruszywa grubego (PPL, XPL)

Spękane ziarno kwarcytuNiespękane ziarno kwarcytuRys. 3.5. Różnice w wielkości ziaren kwarcu w kruszywie kwarcytowym XPL_G, (10A)

Rys. 3.6. Przykładowe zdjęcie spękanego kruszywa kwarcytowego pokazujące wymiary największych ziaren kwarcu znajdujących się między kryptokrystalicznym kwarcem, XPL_G

Rys. 3.7. Żel ASR widoczny w zaczynie cementowym w próbkach 3A, 5A, 7A, 8A i 10A, PPL

XPL_G

UV

Rys. 3.8. Żel ASR wychodzący z kruszywa kwarcytowego i penetrujący dalej matrycę cementową i pory powietrzne (próbka 10A)

Rys. 3.9. Żel ASR wychodzący z kruszywa kwarcytowego i penetrujący dalej matrycę cementową (kolejno PPL, XPL, XPL_G, UV; próbka 5A)

b) 7A

Rys. 3.10. Żel ASR częściowo wypełniający pustki powietrzne (XPL_G, UV)

Rys. 3.11. Szerokość rysy w zaczynie wypełnionej żelem ASR (PPL)

Rys. 3.12. Szerokość rys w ziarnach kruszywa kwarcytowego (XPL_G)

<u>Metoda ilościowego oszacowania stopnia zarysowania betonu:</u> na cyfrowych obrazach cienkich szlifów w świetle UV przy powiększeniu 40x. Procedura wyodrębniania rys na obrazie, wraz z eliminacją obiektów niebędących rysami- według procedury własnej IPPT PAN.

Na Rys.3.14 przedstawiono widok spękań na powierzchni próbek otrzymanych bezpośrednio z mikroskopu oraz po eliminacji obiektów niebędących rysami. Liczbowe wyniki pomiaru charakterystyki zarysowań przedstawiono w Tablicy 3.1. Wyznaczone zostały następujace parametry:

- całkowita długość dendrytyczna rys [mm] – suma długości dendrytycznych wszystkich rys,

- całkowitą powierzchnię rys [mm²] - suma powierzchni wszystkich rys,

- gęstość rys [mm⁻¹] - iloraz całkowitej długości dendrytycznej rys do powierzchni analizowanego obrazu,

- udział powierzchniowy rys - iloraz całkowitej powierzchni rys do powierzchni analizowanego obrazu.

(SA, TA) I Z pasa woniego (SA, OA I TOA)							
Oznaczenie	Całkowita powierzchnia	Długość	Castaćć [mm-1]	Udział powierzchniowy			
próbki	rys [mm²]	dendrytyczna [mm]	[%]				
3A	17,13	137,7	0,138	1,71			
7A	16,25	115,0	0,115	1,62			
5A	19,44	189,6	0,190	1,94			
8A	25,51	165,4	0,165	2,55			
10A	24,23	164,0	0,164	2,42			

Tablica 3.1. Wyniki oznaczenia charakterystyki spękań w próbkach betonu z pasa awaryjnego (3A, 7A) i z pasa wolnego (5A, 8A i 10A)

Rys. 3.13. Ilustracja sposobu przekształcania obrazu prowadzącego do wyodrębnienia spękań widocznych na cienkim szlifie w świetle UV: a) obraz bezpośrednio z mikroskopu, b) po eliminacji obiektów niebędących rysami

Całkowita długość rys na jednostkę powierzchni przekroju (gęstość) wynosiła 0,12-0,14 mm/mm² lub 0,16-0,19 mm/m² odpowiednio w próbkach betonu z pasa awaryjnego i pasa wolnego. Względny udział powierzchniowy zarysowań w stosunku do powierzchni przekroju wynosił 1,6-1,7% lub 1,9-2,4%, odpowiednio w próbkach betonu z pasa awaryjnego i pasa wolnego. Oba parametry wskazują na większy stopień spękania betonu pobranego z pasa ruchu wolnego, o około 37-39 %.

4. Wyniki analizy zgładów metodą mikroskopii skaningowej z EDS

<u>Przygotowanie próbek</u>: 6 próbek (25x45 mm) wycięto z 5 odwiertów: 5B, 6A, 7A, 8A, 10A i 10B (literą A –próbki wycięte z górnej warstwy rdzenia, do 45 mm w głąb od powierzchni, literą B próbki wycięte ze środka wysokości odwiertu. Próbki zostały wypolerowane i napylone węglem do analizy w mikroskopie skaningowym.

<u>Mikroskop skaningowy</u>: Zeiss sigma VP, obserwacje w trybie elektronów wstecznie rozproszonych BSE w wysokiej próżni, napięcie 20kV, apertura 120 mikrometrów, WD 7-8 mm, z detektorem EDS (spektometria z dyspersją energii promieniowania rentgenowskiego), Quantax Esprit 1.9.4.

Stwierdzono, że:

- we wszystkich próbkach występował żel w spękaniach ziaren kruszywa kwarcytowego, a także rozciągał się w głąb matrycy cementowej, Rys. 4.1, 4.2,

- mikroanaliza EDS żelu w mikroobszarach wykazała, że jest to krzemian potasowo-sodowo-wapniowy, Rys. 4.3-4.4,

- żel charakteryzował się znaczącym stężeniem potasu (K), sodu (Na) i wapnia (Ca), Rys. 4.5-4.6,

- żel częściowo lub całkowicie wypełniał pory powietrzne, Rys. 4.2.

Identyfikację pierwiastków chemicznych w żelu przeprowadzono na podstawie mikroanalizy SEM-EDS (analiza bezwzorcowa) z zaznaczonego mikroobszaru lub punktowo. W Załączniku 4 zamieszczono wyniki mikroanalizy EDS w poszczególnych próbkach betonu z odwiertów. Obliczone stosunki masowe Na/Si, K/Si, (Na+K)/Si oraz Ca/Si podano w Tablicy 4.1.

10A (pas wolny)

10B (pas wolny)

Rys. 4.3. Analiza EDS w mikroobszarach w próbce (a) 10A, (b) 10 B: skład żelu w kruszywie kwarcytowym (krzemian potasowo-sodowo-wapniowy)

Rys. 4.4. Skład żelu na podstawie analizy EDS z wybranego obszaru 67 próbki 10A

Rys. 4.5. Mapa stężenia pierwiastków K, Ca i Na w obszarze spękanego ziarna kwarcytu w próbce 10A na Rys.4.3 b (penetracja przez granicę ziarno-zaczyn cementowy)

Rys. 4.6. Żel w ziarnie kwarcytu i mapa stężenia pierwiastków Ca, K i Na (próbka 10B)

Próbka	Wartość:	Na/Si	K/Si	Na+K/Si	Ca/Si
	średnia	0,07	0,31	0,39	0,63
5B	min	0,04	0,12	0,19	0,29
	max	0,13	0,49	0,55	1,84
	średnia	0,06	0,22	0,27	0,31
6A	min	0,01	0,09	0,11	0,08
	max	0,13	0,32	0,42	0,78
	średnia	0,05	0,16	0,21	0,73
7A	min	0,02	0,05	0,07	0,09
	max	0,11	0,42	0,44	3,50
	średnia	0,05	0,17	0,22	0,87
8A	min	0,01	0,03	0,04	0,18
	max	0,21	0,50	0,57	2,41
	średnia	0,11	0,25	0,36	0,76
10A	min	0,03	0,07	0,10	0,07
	max	0,24	0,46	0,57	3,50
	średnia	0,10	0,30	0,39	0,71
10B	min	0,01	0,03	0,05	0,08
	max	0,25	0,44	0,64	2,10

Tablica 4.1. Stosunki stężenia sodu, potasu oraz wapnia do krzemu, obliczone na podstawie wyników mikroanalizy EDS (Załącznik 4)

Obserwowana zmienność jest m.in. związana z umiejscowieniem punktu analizy: żel w ziarnie, w zaczynie cementowym, w porach zaczynu. Na Rys. 4.5-4.6 przedstawiono barwne mapy stężenia pierwiastków K, Ca i Na w obszarze spękanego ziarna kwarcytu i w otaczającym zaczynie cementowym. Za pomocą zmiany intensywności barwy ilustrowana jest penetracja danego jonu przez granicę ziarno-zaczyn cementowy. Stężenie Ca w żelu zwiększało się wraz ze wzrostem odległości od granicy ziarna kruszywa w głąb zaczynu, Rys. 4.6.

Stwierdzono, że skład krzemianu wapniowo-sodowo-potasowego nie odbiega od zakresu zmienności składu żelu powstającego w wyniku reakcji alkalia-kruszywo, znanego z literatury, Rys. 4.7. Literaturowy, najczęściej występujący stosunek stężeń (Na+K)/Si wynosi około 0,2-0,3. Zestawienie danych na Rys.4.7 ilustruje częstotliwości występowania poszczególnych składników żelu ASR na podstawie stosunku Na/Si, K/Si oraz Ca/Si.

Rys. 4.7. Częstotliwość występowania poszczególnych składników żelu ASR na podstawie danych z literatury- źródło [6]

Stwierdzono systematyczne zróżnicowanie składu żelu w zależności od miejsca występowania (Tablica 4.2):

- żel w ziarnie kruszywa : (Na+K)/Si w granicach 0,32±0,09, Ca/Si 0,57±0,17,

- żel w zaczynie cementowym : (Na+K)/Si w granicach 0,28± 0,11, Ca/Si 1,38± 0,53,

- żel w pustce powietrznej: (Na+K)/Si w granicach $0,20\pm0,16$, Ca/Si $1,76\pm0,57$.

To zróżnicowanie znajduje potwierdzone w literaturze w odniesieniu do żelu ASR.

Zaobserwowano pewne zróżnicowanie stężenia pierwiastków w żelu ASR w próbkach pochodzących z pasa wolnego nawierzchni oraz z pasa awaryjnego. Z uwagi na małą liczbę próbek to zróżnicowanie nie prowadzi do jednoznacznych wniosków.

Tablica 4.2. Stosunki stężenia masowego sumy sodu i potasu oraz wapnia do krzemu, obliczone na podstawie wyników mikroanalizy EDS (Załącznik 4) w charakterystycznych miejscach betonu

Próbka	Miejsce	(Na+K)/Si	Ca/Si
	kruszywo	0,39	0,54
5B	matryca	0,38	0,75
	pory	nb	nb
	kruszywo	0,28	0,30
6A	matryca	nb	nb
	pory	nb	nb
	kruszywo	0,23	0,53
7A	matryca	0,15	2,00
	pory	nb	nb
	kruszywo	0,23	0,70
8A	matryca	0,22	1,72
	pory	0,08	2,19
	kruszywo	0,32	0,78
10A	matryca	0,41	0,94
	pory	0,38	1,11
	kruszywo	0,44	0,58
10B	matryca	0,22	1,49
	pory	0,13	1,99

nb – brak wyniku

5. Wyniki pomiarów właściwości sprężystych próbek betonu

<u>Metoda badania</u> oznaczenia rezonansowego modułu sprężystości betonu: zgodna z ASTM C215-14 [7]. Z odwiertów nr 3, 6 i 7 wycięto próbki w postaci płaskich płytek o grubości około 30 mm i długości 240 mm. Wzbudzenie drgań sprężystych poprzecznych i pomiar częstości rezonansowej za pomocą urządzenia Grindosonic.

Wyniki oznaczenia rezonansowego modułu sprężystości betonu w próbkach przedstawiono w Tablicy 5.1, natomiast w Tablicy 5.2 przedstawiono wartości średnie z pomiarów oraz wyznaczony iloraz, stanowiący oszacowanie zmian wskutek długoletniej eksploatacji.

Jako próbki porównawcze wykorzystano odwierty z dolnej warstwy betonu nawierzchniowego ułożonego na odcinku próbnych drogi ekspresowej. Wybór betonu porównawczego był arbitralny - na podstawie podobieństwa wytrzymałości na ściskanie (C35/45), zawartości

objętościowej kruszywa w betonie oraz technologii układania metodą ślizgową. Odniesienie się do porównawczego betonu nawierzchniowego było wskazane z uwagi na niekonwencjonalne wymiary próbek wycinanych z odwiertów (moduł wyznaczono na próbkach o takich samych wymiarach wyciętych z odwiertów).

Tablica 5.1. Wyniki oznaczenia rezonansowego modułu sprężystości [GPa] betonu w próbkach za pomocą urządzenia Grindosonic

Oznaczenie próbek	Data badania					
	2018-07-17	2018-07-19	2018-07-20	2018-07-23		
3_\$8 WP	22,1	19,5	19,9	20,4		
6_\$8 WP	15,0	13,0	13,5	14,1		
7_\$8 WP	19,0	16,9	17,6	19,2		
DWN1	45,3	42,0	42,0	41,7		
DWN2	45,6	42,0	41,9	41,8		
DWN3	45,2	42,2	41,9	41,8		

Tablica 5.2. Średnie wartości rezonansowego modułu sprężystości [GPa] betonu w próbkach z odwiertów i próbkach porównawczych oraz oszacowanie redukcji modułu wskutek eksploatacji

Oznaczenie betonu	Data badania					
	2018-07-17	2018-07-19	2018-07-20	2018-07-23		
S8 W-P	18,7	16,5	17,0	17,9		
DWN	45,4	42,0	41,9	41,8		
względna z	względna zmiana rezonansowego modułu sprężystości					
E _{S8W-P} /41,9 GPa ²	45%	39%	40%	43%		
E _{S8W-P} /E _{DWN} ³	41%	39%	40%	43%		

Do oszacowania wyjściowego modułu sprężystości betonu o 28 dniowej wytrzymałości 40 MPa, można wykorzystać znane zależności normowe, uzyskując 41,9 GPa według Eurokodu 2 oraz 42,4 GPa według normy brytyjskiej CP 110. Różnice oszacowania są znikome.

Stwierdzono:

- 1. Zbliżony moduł rezonansowy w odwiertach 3 i 7 (od 17 do 22 GPa), znacznie niższy w odwiercie 6 (od 13 do 15 GPa), co wskazuje na znaczne zróżnicowanie degradacji betonu.
- 2. Znacznie większy moduł rezonansowy w próbkach z porównawczych odwiertów DWN (od 42 do 45 GPa), bez znaczącego rozrzutu wyników pomiarów. Moduł bardzo bliski średniej wartości oszacowanej według wzoru z Eurokodu 2, wynoszącej 44 GPa.
- Porównanie uśrednionego modułu rezonansowego betonu S8 W-P z modułem wyjściowym, oszacowanym na podstawie zależności normowych jako w przybliżeniu 42 GPa, wskazuje na znaczącą redukcję właściwości sprężystych betonu wskutek

² 41,9 = 22 * (40,0/10)^(1/3) * 1,2 – oszacowana w [GPa] na podstawie Eurokodu 2 wartość rezonansowego modułu sprężystości betonu o wytrzymałości f_c =40,0 MPa, przyjmując znany z literatury stosunek modułu dynamicznego do statycznego = 1,2

³ E_{DWN} – wartość z tej kolumny w wierszu DWN wyznaczona w taki sam sposób, na próbkach o takich samych wymiarach wyciętych z odwiertów z wykonanej nawierzchni metodą ślizgową na odcinku próbnym

wieloletniej eksploatacji nawierzchni. Redukcję modułu można oszacować na co najmniej 50%.

- 4. Porównanie uśrednionego modułu rezonansowego betonu S8 W-P z modułem wyznaczonym na próbkach porównawczego betonu z DWN drogi ekspresowej układanej w roku 2017 wskazuje na takie same, jak powyżej różnice właściwości sprężystych. W stosunku do niedawno ułożonego betonu nawierzchniowego o podobnej zawartości kruszywa grubego⁴ i tylko nieco wyższej klasie wytrzymałości, beton w odwiertach z S8 W-P wykazuje spadek właściwości sprężystych o co najmniej 50%.
- 5. Oszacowany spadek rezonansowego modułu sprężystości sięgający 50% wskazuje na poważne uszkodzenia betonu wskutek wieloletniej eksploatacji nawierzchni.

6. Obserwacje wydzieliny ze spękań i pomiary ekspansji próbek betonu

Aby sprawdzić dalszy potencjał występowania reakcji ASR w betonie na diagnozowanym odcinku nawierzchni z odwiertów wycięto próbki pryzmatyczne o wymiarach ok. 30x47x240 mm. Na końcach próbek wklejono repery do pomiaru zmian długości. Po nasyceniu próbek wodą do stałej masy rozpoczęto procedurę badania zmian długości próbek w 1 N roztworze NaOH w temperaturze 80°C. Procedura badania odpowiadała metodzie normowej ASTM C1260 [8] i RILEM AAR-2 [9] (ujętej w instrukcji GDDKiA [10]), za wyjątkiem stosowania próbek betonu stwardniałego zamiast próbek świeżo uformowanej zaprawy. W konsekwencji tego odstępstwa niemożliwe jest zastosowanie normowych kryteriów oceny reaktywności kruszywa.

Na Rys.6.1a pokazano widok próbki wyciętej z odwiertu z nawierzchni S8_W-P wraz z reperami na końcach, umocowanej w urządzeniu do pomiaru zmian długości. Na Rys.6.1 b pokazano wykres zmian średniej długości trzech badanych próbek w kolejnych dniach prowadzenia pomiaru przy przechowywaniu próbek w 1 N roztworze NaOH w temperaturze 80°C. Stwierdzone średnie wydłużenie próbek przekroczyło 0,1 % po 28 dniach przechowywania w takim roztworze. Wynik wskazuje, że w kruszywie kwarcytowym obecnym w betonie nadal znajduje się znacząca ilość minerałów reaktywnych, które mogą wziąć udział w ekspansywnej reakcji ASR. Reakcja alkalia-krzemionka na ogół przebiega znacznie szybciej przy rozdrobnieniu ziaren kruszywa, zatem porównywanie ekspansji próbek betonu z ziarnami kruszywa do 32mm z granicami ekspansji wyznaczonymi dla próbek zaprawy tym bardziej nie ma uzasadnienia.

Obserwacje powierzchni próbek po wyjęciu z roztworu NaOH wykazały:

- wydzielanie substancji o charakterze ziarnistego żelu na krawędziach spękań w ziarnach kruszywa kwarcytowego (Rys.6.3 a),

- mięknienie ziaren kruszywa kwarcytowego w niektórych obszarach (Rys.6.3 b, 6.4),

- pęcznienie ziaren kruszywa kwarcytowego, ujawniające się odpryskami fragmentów ziaren z powierzchni bocznych próbek betonu (Rys.6.5).

W pierwszych dniach badania na powierzchni próbek zauważono półprzezroczysty żel wydobywający się głównie z jasnych, spękanych ziaren kruszywa grubego. Po upływie dwóch tygodni zauważono, że niektóre jasne ziarna kruszywa grubego pęcznieją i miękną (dały się nakłuć paznokciem). Po zakończeniu badania z łatwością udało się usunąć całe ziarno kruszywa bez naruszenia otaczającej go matrycy cementowej (Rys.6.4-6.5).

⁴ Zawartość kruszywa w betonie jest decydującym czynnikiem wpływającym na stosunek dynamicznego modułu sprężystości do modułu statycznego.

a)

b)

Rys.6.1. Widok próbki wyciętej z odwiertu z nawierzchni S8_W-P wraz z reperami (a) oraz wykres zmiany średniej długości trzech badanych próbek betonu w kolejnych dniach prowadzenia pomiaru przy przechowywaniu próbek w 1 N roztworze NaOH w temp. 80°C (b)

Rys.6.4.. Widok kruszywa kwarcytowego na powierzchni próbki betonu przed (a) oraz po (b) usunięciu zmiękczonego fragmentu ziarna

Rys.6.5 Odpryski ziaren kruszywa kwarcytowego wskutek przechowywania próbek betonu w 1 N roztworze NaOH w temperaturze 80°C.

7. Wyniki pomiaru ekspansji próbek zaprawy z kruszywem kwarcytowym

Po ustaleniu rodzaju kruszywa wykazującego znaczne spękania i obecność zidentyfikowanego żelu ASR, odwołując się do archiwalnych danych o składzie betonu (Załącznik 2), podjęte zostały starania o zgromadzenie kruszywa kwarcytowego z tego samego złoża "Wiśniówka". W ilości niezbędnej do przeprowadzenia badań kruszywo kwarcytowe ze złoża "Wiśniówka" znajduje się w zasobach archiwalnych laboratorium IPPT PAN (frakcja 2/8 i 8/16 była sprowadzona od producenta w roku 2015 jako próbka do badań w innym projekcie badawczym).

Zgodnie z procedurami normowymi ASTM C1260 [8] i RILEM AAR-2 [9] (ujętymi w instrukcji GDDKiA [10]) przygotowano próbkę kruszywa kwarcytowego ze złoża "Wiśniówka" o odpowiednim uziarnieniu, a następnie wykonano badanie reaktywności kruszywa metodą przyśpieszoną w 1 N roztworze NaOH w temperaturze 80°C. Zastosowano cement portlandzki CEM I 42,5 R (Norcem) o zawartości alkaliów powyżej 1,1% Na₂O_{eq}, stałość objętości wg PN-EN 196-3 <1mm. Do oceny ekspansji próbek zastosowano kryteria zgodne ze wspomnianą Instrukcją (Tablica 7.1).

Tablica 7.1. Kategorie reaktywności kruszywa na podstawie średniej zmiany długości próbek zaprawy po 14 dniach przechowywania w 1 N roztworze NaOH w temperaturze 80°C według Załącznika 1 do Ogólnej Specyfikacji Technicznej D - 05.03.04, GDDKiA 2018

Kategoria reaktywności	Opisowe określenie	14-dniowa zmiana
kruszywa	reaktywności	długości próbek [%]
RO	niereaktywne	≤ 0,10
R1	umiarkowanie reaktywne	>0,10; ≤ 0,30
R2	silnie reaktywne	>0,30; ≤ 0,45
R3	bardzo silnie reaktywne	>0,45

Średnią zmianę długości próbek w kolejnych dniach prowadzenia pomiaru podano w Tablicy 7.2. Od pomiaru zerowego do końca okresu ekspozycji w 1 N roztworze NaOH obserwowano stały przyrost długości próbek. W trakcie badania na ściankach bocznych próbek zaobserwowano wykwity żelu. Na podstawie do kryteriów podanych w Tablicy 6.1 badane kruszywo kwalifikuje się do kategorii "R2" tj. do kruszyw silnie reaktywnych.

Tablic 6.2. Średnia zmiana długości próbek [%] w kolejnych dniach prowadzenia pomiaru przy przechowywaniu próbek w 1 N roztworze NaOH w temperaturze 80°C (zgodnie z Zał. 1 do Ogólnej Specyfikacji Technicznej D - 05.03.04, GDDKiA 2018)

		Oznaczenie próbki			Wartość
Liczba dni	Data	KW1	KW2	KW3	średnia
0	4.07.18	0	0	0	0
2	6.07.18	0,020	0,022	0,024	0,022
5	9.07.18	0,118	0,122	0,141	0,127
7	11.07.18	0,189	0,185	0,201	0,192
8	12.07.18	0,209	0,251	0,231	0,230
9	13.07.18	0,234	0,235	0,255	0,241
12	16.07.18	0,313	0,316	0,337	0,322
13	17.07.18	0,339	0,335	0,358	0,344
14	18.07.18	0,346	0,350	0,376	0,357
15	19.07.18	0,369	0,369	0,400	0,380
16	20.07.18	0,389	0,389	0,419	0,399
19	23.07.19	0,436	0,440	0,468	0,448
21	25.07.18	0,472	0,478	0,508	0,486
26	30.07.18	0,543	0,546	0,572	0,554
28	1.08.18	0,569	0,574	0,601	0,581

8. Wyniki pomiarów charakterystyki porów w próbkach betonu

Oznaczenie charakterystyki porów w betonie przeprowadzono na próbkach wyciętych z odwiertów rdzeniowych #5, 8 i 10, pobranych z pasa ruchu wolnego na analizowanym odcinku nawierzchni. Płytki o wymiarach 100x100x25mm wycięto z górnej (G) i dolnej (D) części każdego rdzenia, aby rozpoznać ewentualne zróżnicowanie charakterystyki porów. Wyniki badania zgodnie z PN-EN 480-11 [11] przeprowadzono za pomocą mikroskopowego zestawu pomiarowego (Nikon SMZ800, kamera cyfrowa QICAM Fast 1394, stolik skaningowy Marzhauser Scan 150x150, oprogramowanie Image Pro Plus 7.0).

Szczegółowe wyniki oznaczenia charakterystyki porów w górnych i dolnych częściach odwiertów przedstawiono w Załączniku 6. W Tablicy 8.1 Zestawienie wyników pomiaru charakterystyki porów w betonie zgodnie z PN-EN 480-11 w próbkach wyciętych z odwiertów.

Tablica 8.1. Zestawienie wyników pomiaru charakterystyki porów w betonie zgodnie z PN-EN 480-11 w próbkach wyciętych z odwiertów

Charaktanistika	Oznaczenie odwiertu			
Charakterystyka	5	8	10	
Całkowita zawartość powietrza A [%]	2,02	1,21	3,07	
Powierzchnia właściwa porów α [mm ⁻¹]	24,53	29,89	30,47	
Wskaźnik rozmieszczenia L [mm]	0,31	0,31	0,20	
Zawartość mikroporów A300 [%]	0,72	0,60	1,69	

Stwierdzono niewielką całkowitą zawartość powietrza w betonie, tylko w jednym z trzech odwiertów przekraczającą 3%. Równocześnie tylko w jednym z trzech odwiertów wskaźnik rozmieszczenia porów był nie większy niż 0,20 mm i zawartość mikroporów przekraczała 1,5%. Jedynie w przypadku odwiertu #10 charakterystykę porów uznaje się za właściwą w kategorii agresywności środowiska XF4. W pozostałych dwóch rdzeniach napowietrzenie całkowite, jak też zawartość mikroporów, są marginalne.

Stwierdzono nieznaczną tendencję zróżnicowania zawartości powietrza w górnej i dolnej części nawierzchni, sięgającą około 0,5%. Zasadniczym spostrzeżeniem pozostaje jednak znaczne zróżnicowania charakterystyki porów w odwiertach #5 i 8 w porównaniu do odwiertu #10, co świadczy o wyraźnie zróżnicowanej jakości napowietrzenia betonu w obrębie tego odcinka nawierzchni.

9. Wyniki pomiarów porowatości otwartej i szybkości absorpcji wody

Metoda oznaczenia porowatości otwartej: metoda próżniowa zgodna z NF P18-459 [12] na próbkach o wymiarach ok. ϕ 50x100 mm wyciętych z odwiertów rdzeniowych. Metoda oznaczenia szybkości absorpcji wody przez beton: ASTM C1585 [13] na próbkach o wymiarach ok. ϕ 50x100 mm wyciętych z odwiertów rdzeniowych.

Wyniki badania przedstawiono w Tablicach 8.1-8.3.

Nr próbki	Gęstość objętościowa [g/cm ³]		Porowatość otwarta [%]	
	Wynik pomiaru	Wartość średnia	Wynik pomiaru	Wartość średnia
1/A	2,36		12,9	
1/B	2,37	2,37	11,8	12.1
1/C	2,38		11,6	,_
4/A	2,39		9,6	
4/B	2,40	2 /1	8,9	0 5
4/C	2,41	2,41	9,7	5,5
4/D	2,43		9,6	

Tablica 8.1. Gęstość objętościowa i porowatość otwarta (dostępna dla wody) w próbkach z odwiertów #1 i #4 wyznaczona metodą NF P18-459:2010

Tablica 8.2. Szybkość absorpcji wody w próbkach z odwiertu #1 wyznaczona metodą ASTM C1585-17

	Początkowa szybkość absorpcji	Wtórna szybkość absorpcji
Nr próbki	[·10 ⁻⁴ mm/s ^{1/2}]	[·10 ⁻⁴ mm/s ^{1/2}]
1/A	6,5	6,3
1/B	6,0	5,2
1/C	5,8	4,7
Wartość średnia	6,1	5,4
Odch. standardowe	0,3	0,7

Nr próbki	Początkowa szybkość absorpcji [·10 ⁻⁴ mm/s ^{1/2}]	Wtórna szybkość absorpcji [·10 ⁻⁴ mm/s ^{1/2}]
4/A	5,2	5,4
4/B	5,0	5,8
4/C	6,6	5,5
4/D	7,6	7,1
Wartość średnia	6,1	6,0
Odch.standardowe	1,1	0,7

Tablica 8.2. Szybkość absorpcji wody w próbkach z odwiertu #4 wyznaczona metodą ASTM C1585-17

Porowatość otwarta betonu w próbkach wynosi 10-12 %. Zaobserwowane zróżnicowanie porowatości otwartej wynika najprawdopodobniej z różnego napowietrzenia, o czym świadczą różnice gęstości objętościowej betonu. Zgodnie z kryteriami Baroghel-Bouny [14] porowatość otwarta mieści się w przedziale odpowiadającym dobrej przewidywanej trwałości betonu.

Szybkość absorpcji wody jest mała - wynosi ok. $6 \cdot 10^{-4}$ mm/s^{1/2}. Jest to szybkość absorpcji typowa w przypadku betonu o w/c=0,40 z cementem CEM I. Brak zmian szybkości absorpcji w dłuższych okresach badania powyżej 1 dnia (wtórna szybkość absorpcji) jest zjawiskiem charakterystycznym dla betonu o niewielkiej przepuszczalności. Ponieważ próbki absorpcji wody wycięto z odwiertów bez rozwarstwień i spękań, powyższe wyniki nie odnoszą się do zarysowanych czy uszkodzonych fragmentów nawierzchni. Zatem w obszarach bez dużych spękań beton nie wykazuje nadmiernej przepuszczalności.

10. Synteza wyników i wnioski

Nawierzchnię betonowej drogi ekspresowej S8 na odcinku Wolbórz-Polichno wykonano w latach 2002-2003 stosując materiały zgodne z ówczesnymi normami i SST. Z danych archiwalnych wynika, że zasadniczymi składnikami były: cement portlandzki CEM I 32,5 R "Rudniki", piasek płukany 0/2 mm "Stobiecko", grys amfibolitowy 2/8 mm "Ogorzelec", - grys amfibolitowy 8/16 mm "Ogorzelec", grys kwarcytowy 16/31,5 mm "Wiśniówka. Jakość betonu nie budziła zasadniczych zastrzeżeń, jedyne wyraźne zastrzeżenie dotyczyło nieco mniejszej niż projektowana wytrzymałości na rozciąganie przy zginaniu.

Najważniejsze obserwacje i wyniki pomiarów przeprowadzonych w laboratorium IPPT PAN na próbkach odwierconych z betonowej nawierzchni drogi ekspresowej S8 na odcinku Wolbórz-Polichno zestawiono poniżej:

- 1. W betonie we wszystkich odwiertach występują liczne spękania ziaren kruszywa grubego kwarcytowego i zaczynu cementowego. Rozwarcie rys mieściło się w granicach 0,1-0,2 mm. Stopień zarysowania betonu w przekroju, określony sumą długości rys na jednostkę powierzchni próbki, wynosi 0,18 mm/mm² i 0,13 mm/mm², odpowiednio w próbkach z pasa ruchu wolnego i pasa awaryjnego.
- 2. W spękaniach w ziarnach kruszywa kwarcytowego stwierdzono występowanie żelu zbudowanego z krzemianu potasowo-sodowo-wapniowego, o składzie chemicznym zgodnym z typowym składem żelu powstającego w wyniku reakcji alkalia-kruszywo. Zgodność wykazana na podstawie analizy SEM-EDS jest dodatkowo zilustrowana na

Rys.10.1.

- 3. Występowanie żelu w postaci krzemianu potasowo-sodowo-wapniowego stwierdzono także w rysach w zaczynie cementowym oraz w pustkach powietrznych, częściowy wypełnionych teraz żelem. Stwierdzono ciągłość żelu rozciągającego się od spękań w ziarnach kwarcytu w kierunku granicy ziarna i dalej w głąb zaczynu cementowego. Zaobserwowano wyraźną korelację zróżnicowania składu chemicznego żelu w funkcji odległości od granicy reaktywnych ziaren. Jest to potwierdzenie danych literaturowych.
- 4. W ziarnach kruszywa kwarcytowego stwierdzono obfitość występowania reaktywnych form kwarcu: kwarcu mikrokrystalicznego i kryptokrystalicznego. Oszacowana zawartość kwarcu mikrokrystalicznego i kryptokrystalicznego w tych ziarnach, w których zaobserwowano spękania i charakterystyczny żel, przekraczała łącznie 10%.
- 5. Nie stwierdzono obecności reaktywnych form kwarcu w kruszywie drobnym ani w kruszywie grubym amfibolitowym.
- 6. Pęcznienie próbek betonu eksponowanych na działanie środowiska promującego reakcję ASR wskazuje na potencjał dalszego rozwoju reakcji alkalia-kruszywo. Stwierdzono intensywne wydzieliny ze spękań i odpryski ziaren kwarcytu.
- 7. Wyznaczona charakterystyka porów powietrznych w betonie świadczy o zróżnicowanej jakości systemu porów powietrznych, niekiedy poniżej oczekiwanych parametrów zawartości i rozkładu wielkości porów.
- 8. Wyznaczony metodą nieniszczącą rezonansowy moduł sprężystości próbek betonu wynosi jedynie ok. 18 GPa. Świadczy to o rozległości zasięgu spękań w betonie i odpowiada oszacowanej redukcji wyjściowego modułu co najmniej o 50%.
- 9. Wyznaczona porowatość otwarta betonu wynosi 10-12 %, a szybkość absorpcji wody wynosi ok. 6·10-4 mm/s^{1/2}. Wyniki wskazują na raczej dobrą szczelność betonu w tych miejscach, gdzie nie ma dużych zarysowań.

Dodatkowo podjęte badania wyjaśniające dotyczyły ekspansji próbek zapraw z kruszywem kwarcytowym w warunkach przechowywania w 1N roztworze NaOH w temperaturze 80°C zgodnie z ASTM/RILEM i procedurą GDDKiA OST "Nawierzchnie betonowe" 2018. Stwierdzono silną reaktywność kruszywa kwarcytowego - "R2". Kruszywo kwarcytowe pochodziło z tego samego złoża "Wiśniówka", co kruszywo używane do wykonania betonu w nawierzchni odcinka.

Zasadnicze wnioski z przeprowadzonych badań diagnostycznych są następujące:

- 1. Wystąpienie ekspansywnej reakcji alkalia-kruszywo kwarcytowe w betonie jest widoczne wyraźnie w każdym badanym odwiercie i jest skorelowane z obecnością mikro- i kryptokrystalicznej formy kwarcu w kruszywie kwarcytowym.
- 2. Występowanie charakterystycznego żelu ASR w spękaniach kruszywa wyraźnie wskazuje na związek spękań betonu z reakcją alkalia kruszywo-kwarcytowe.
- 3. Badania diagnostyczne wskazują też ewentualny równoczesny wpływ na spękania czynników drugorzędnych, takich jak intensywność obciążenia ruchem pojazdów oraz agresja mrozu i środków odladzających. Na te czynniki wskazują zwiększone spękania występujące w betonie z pasa ruchu powolnego w porównaniu ze spękaniami betonu na pasie awaryjnym, a także miejscowe defekty napowietrzenia betonu.

Rys. 10.1. Skład żelu Si-Ca-Na-K w betonie ulegającym reakcji alkalia-kruszywo na podstawie danych literaturowych z zaznaczonymi wynikami badań odwiertów; 10A-pas wolny, 7A-pas awaryjny

Prognoza dalszego postępu reakcji alkalia-kruszywo kwarcytowe została przeprowadzona w odniesieniu do zawartości reaktywnych form kwarcu. Pęcznienie próbek eksponowanych na działanie środowiska promującego reakcję ASR, wydzieliny ze spękań i odpryski ziaren kwarcytu wskazują na dostateczną zawartość reaktywnych form kwarcu w kruszywie do dalszego rozwoju reakcji. W związku z silnym spękaniem betonu w nawierzchni i zwyczajowo obfitym stosowaniem roztworu NaCl do odladzania nawierzchni w zimie można przewidywać znaczącą obecność jonów sodu pochodzących z zewnątrz w cieczy porowej betonu. Przypuszczalnie nie zabraknie więc ani wilgoci ani wodorotlenków alkalicznych do podtrzymania reakcji z kwarcytem.

Określenie, czy aktualna zawartość alkaliów w cieczy porowej betonu w odwiertach jest dostateczna do podtrzymania reakcji wykracza poza możliwości badawcze laboratoriów w Polsce. W związku z udziałem prof. Jana Olka w pracach IPPT PAN jako konsultanta uzgodniono przekazanie kawałka betonu z odwiertu do przeprowadzenia ekstrakcji cieczy porowej i późniejszego oznaczenia zawartości alkaliów. Laboratorium Purdue University posiadło tą wyrafinowaną umiejętność już dawno temu, a Prof. Olek jest wybitnym znawcą zagadnienia. Przekazanie betonu możliwe jest dopiero w październiku 2018.

Dane archiwalne wskazują, że zgodność jakości materiałów użytych do budowy nawierzchni z normami i specyfikacjami, obejmowała m.in. kruszywo łamane kwarcytowe 16/31,5 mm "Wiśniówka". Kruszywo uznano za niereaktywne na podstawie zerowego stopnia potencjalnej reaktywności alkalicznej, określanego zgodnie z PN-B-06714-46:1992 "Kruszywa mineralne. Badania. Oznaczanie potencjalnej reaktywności alkalicznej metodą szybką". Norma jest nadal w spisie norm aktualnych PKN. Obserwacje doświadczalne i wnioski z przeprowadzonych badań odwiertów zaprzeczają przydatności tej procedury normowej do kwalifikacji reaktywności kruszywa kwarcytowego, stosowanego w omawianym przypadku.

11. Wykaz norm i dokumentów związanych

[1] Analiza wybranych właściwości mieszanki betonowej i betonu stosowanego do budowy betonowych nawierzchni drogowych wykonanych w kraju w latach 2001-2004. Badania i analiza trwałości betonu stosowanego do nawierzchni drogowych pod kątem oceny cech użytkowych i trwałościowych. Etap I. IBDiM, Warszawa, listopad 2004, 96 str

- [2] B.Fournier, M.-A. Bérubé, K.J. Folliard, M.Thomas Report on the Diagnosis, Prognosis, and Mitigation of Alkali-Silica Reaction (ASR) in Transportation Structures, FHWA, Washington 2010
- [3] RILEM AAR-1.1: 2016 Detection of potential alkali-reactivity—Part 1: Petrographic examination method
- [4] ASTM C295-12, Standard Guide for petrographic examination of aggregates for concrete
- [5] ASTM C856-17, Standard practice for petrographic examination of hardened concrete
- [6] A. Gholizadeh-Vayghan, F.Rajabipour, The influence of alkali–silica reaction (ASR) gel composition on its hydrophilic properties and free swelling in contact with water vapour, Cement and Concrete Research 94, 2017, 49–583
- [7] ASTM C215-14 Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens
- [8] ASTM C1260 14 Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)
- [9] RILEM AAR-2: 2016 Detection of Potential Alkali-Reactivity—Accelerated Mortar-Bar Test Method for Aggregates
- [10] Instrukcja badania reaktywności kruszyw metodą przyśpieszoną w 1 N roztworze NaOH w temperaturze 80°C, Załącznik 1 do Ogólnej Specyfikacji Technicznej D - 05.03.04 Nawierzchnia z betonu cementowego, GDDKiA, 7 czerwca 2018
- [11] PN-EN 480-11:2008 Domieszki do betonu, zaprawy i zaczynu Metody badań Część 11: Oznaczanie charakterystyki porów powietrznych w stwardniałym betonie.
- [12] NF P18-459:2010 Béton Essai pour béton durci Essai de porosité et de masse volumique
- [13] ASTM C1585-13 Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes
- [14] V.Baroghel-Bouny, Durability indicators: relevant tools for performance-based evaluation and multi-level prediction of RC Durability, RILEM Workshop on Performance Based Evaluation and Indicators for concrete Durability, Madryt 2006, 3-30

Uwagi końcowe

Wyniki badań dotyczą wyłącznie badanych próbek. Raport z załącznikami zawiera łącznie 66 stron. Niniejszy raport jest przeznaczony do użytku wewnętrznego Departamentu Studiów GDDKiA.

ZAŁĄCZNIKI

Załącznik 1 Pismo z Departamentu Studiów w sprawie odwiertów

Warszawa, dnia 18.06.2018

Pan prof. dr hab. inż. Michał Glinicki

Instytut Podstawowych Problemów Techniki PAN 02-106 Warszawa,

Dotyczy: Wykonanie badań odwiertów z odcinka drogi S8 Wolbórz-Polichno

Szanowny Panie Profesorze,

Departament Studiów GDDKiA zwraca się z prośbą o wykonanie badań odwiertów betonowych w ramach Zadania 7 projektu RID I-37.

Zostały one pobrane z obu jezdni nawierzchni betonowej drogi S8 w km 334+650 – 344-780 na odcinku Wolbórz-Polichno w dniach 14-15 czerwca br.

Z poważaniem, Departament Studiow Marcin Nowacki Zastępca Dyrektora

Generalna Dyrekcja Dróg Krajowych i Autostrad ul. Wronia 53 00-874 Warszawa tel.: (022) 375 88 88 fax: (022) 375 86 00

www.gddkia.gov.pl e-mail: kancelaria@gddkia.gov.pl

Załącznik 2 Skład i właściwości betonu nawierzchniowego według danych archiwalnych

Archiwalne dane o składzie i właściwościach betonu stosowanego przy modernizacji drogi krajowej nr 8, odcinek Wolbórz – Polichno, zaczerpnięto z obszernego raportu IBDiM [1]. Odcinek drogi o długości 12,2 km wykonano w okresie od czerwca 2002 do listopada 2003, wykonawcami robót były firmy Heilit + Woerner Budowlana Sp. z o.o. oraz Walter + Heilit Verkehrswegebau GmbH. Konstrukcja drogi została zaprojektowana dla drogi ekspresowej o obciążeniu 115 kN/oś i kategorii ruchu KR6. Przekrój poprzeczny drogi po modernizacji to dwie jezdnie po 2 pasy ruchu o szerokości 3,5 m każdy, opaski wewnętrzne 0,5 m oraz pasy awaryjnego postoju o szerokości 2,5 m. Istniejącą nawierzchnię asfaltową wykorzystano jako podbudowę dla nowej nawierzchni betonowej, dyblowanej i kotwionej, wykonanej z betonu cementowego klasy B40 grubości 27 cm.

Do produkcji mieszanki betonowej zastosowano następujące składniki (Tablica 1):

- cement portlandzki CEM I 32,5 R "Rudniki",
- piasek płukany 0/2 mm "Stobiecko",
- grys amfibolitowy 2/8 mm "Ogorzelec",
- grys amfibolitowy 8/16 mm "Ogorzelec",
- grys kwarcytowy 16/31,5 mm "Wiśniówka",
- wodę,
- domieszkę napowietrzającą Isola LP AEA,
- domieszkę uplastyczniającą Isola FM.

Właściwości użytych kruszyw podano w Tablicach 2-5, podając jednocześnie wymagania SST stosowanych na tym kontrakcie. Wyniki dotyczące odporności kruszyw na reakcję alkaliakruszywo są tu barwnie wyróżnione. Należy dodać, że do określenia stopnia potencjalnej reaktywności alkalicznej stosowano metodę wg PN-B-06714-46:1992 "Kruszywa mineralne. Badania. Oznaczanie potencjalnej reaktywności alkalicznej metodą szybką", a norma jest nadal w spisie norm aktualnych PKN. W Tablicy 6 podano właściwości mieszanki betonowej i betonu na podstawie zarobów próbnych.

Składniki		Zawartość
Skidulliki		200001030
Cement	CEM I 32,5 R "Rudniki"	360 kg
Piasek 0 2 mm	płukany "Stobiecko"	551 kg
Grys 2 8 mm	amfibolitowy "Ogorzelec"	228 kg
Grys 8 16 mm	amfibolitowy "Ogorzelec"	475 kg
Grys 16 31,5 mm	kwarcytowy "Wiśniówka"	645 kg
Woda		144 kg
Domieszki	napowietrzająca Isola LP AEA	0,16 % mc.
	uplastyczniająca Isola FM	0,50 % mc.

Tablica Z2.1. Receptura mieszanki betonowej [kg/m³] (nr HW/B/04/2002)

Tablica Z2.2: W	vniki badań	piasku	płukanego	0/2 mm ,	"Stobiecko"
-----------------	-------------	--------	-----------	-----------	-------------

Badana cecha	Jednostka	Wyniki badań	Wymagania SST
Zawartość ziarn poniżej 0,075 mm	%	0,8	< 1,0
Zawartość ziarn powyżej 2 mm	%	2,0	< 15,0
Wskaźnik piaskowy	%	84,6	> 75,0
Zawartość zw. siarki w przeliczeniu na SO3	%	0,2	< 0,2
Stopień potencjalnej reaktywności alkalicznej	stopień	0	0
Zawartość zanieczyszczeń obcych	%	brak	< 0,1

Zawartość zanieczyszczeń organicznych	barwa	jaśniejsza	wzorcowa	
Gęstość pozorna	g/cm ³	2,66		

Tablica Z2.3: Wyniki badań grysu amfibolitowego 2/8 mm "Ogorzelec"

Badana cecha	Jednostka	Wyniki badań	Wymagania SST
Zawartość ziarn poniżej 0,075 mm	%	0,2	< 1,2
Zawartość podziarna	%	4,2	< 10
Zawartość nadziarna	%	0,8	< 8
Nasiąkliwość	%	0,6	< 1,5
Mrozoodporność metodą bezpośrednią	%	1,81	< 2
Zawartość ziarn nieforemnych	%	11,72	< 20
Zawartość zw. siarki w przeliczeniu na SO3	%	0,020	< 0,1
Stopień potencjalnej reaktywności alkalicznej	stopień	0,0	0,0
Zawartość zanieczyszczeń obcych	%	brak	< 0,1
Zawartość zanieczyszczeń organicznych	barwa	jaśniejsza	wzorcowa
Gęstość pozorna	g/cm ³	2,91	amfibolit
Ścieralność	%	17,8	< 25,0

Tablica Z2.4: Wyniki badań grysu amfibolitowego 8/16 mm "Ogorzelec"

Badana cecha	Jednostka	Wyniki badań	Wymagania SST
Zawartość ziarn poniżej 0,075 mm	%	0,72	< 1,5
Zawartość podziarna	%	2,8	< 10
Zawartość nadziarna	%	5,49	< 8
Nasiąkliwość	%	0,3	< 1,2
Mrozoodporność metodą bezpośrednią	%	0,32	< 2
Zawartość ziarn nieforemnych	%	10,9	< 20
Zawartość zw. siarki w przeliczeniu na SO3	%	0,012	< 0,1
Stopień potencjalnej reaktywności alkalicznej	stopień	0,0	0,0
Zawartość zanieczyszczeń obcych	%	brak	< 0,1
Zawartość zanieczyszczeń organicznych	barwa	jaśniejsza	wzorcowa
Gęstość pozorna	g/cm ³	2,93	amfibolit
Ścieralność	%	12,9	< 25,0

Tablica Z2.5: Wyniki badań grysu kwarcytowego 16/31,5 mm "Wiśniówka"

Badana cecha	Jednostka	Wyniki badań	Wymagania SST
Zawartość ziarn poniżej 0,075 mm	%	0,6	< 1,5
Zawartość podziarna	%	10,01	< 10
Zawartość nadziarna	%	7,61	< 8
Nasiąkliwość	%	0,5	< 1,2
Mrozoodporność metodą bezpośrednią	%	0,36	< 2
Zawartość ziarn nieforemnych	%	12,8	< 20
Zawartość zw. siarki w przeliczeniu na SO3	%	0,045	< 0,1
Stopień potencjalnej reaktywności alkalicznej	stopień	0,0	0,0
Zawartość zanieczyszczeń obcych	%	brak	< 0,1
Zawartość zanieczyszczeń organicznych	barwa	jaśniejsza	wzorcowa
Gęstość pozorna	g/cm ³	2,7	kwarcyt
Ścieralność	%	20,7	< 25,0

Właściwości mieszanki betonowej	Wyniki badań	Wg SST
w/c	0,4	< 0,45
Konsystencja	14 sek	14 – 22 sek
Zawartość powietrza	4,6 %	min. 4,5 %
Właściwości betonu		
Wytrzymałość na ściskanie po 7 dniach	41,5 MPa	
Wytrzymałość na ściskanie po 28 dniach	50,3 MPa	B40
Wytrzymałość na rozciąganie przy zginaniu	5,6 MPa	5,5 MPa
Nasiąkliwość	4,1 %	< 5,0 %
Mrozoodporność: ubytek masy	0,2 %	< 5,0 %
spadek wytrzymałości	10,5 %	< 20,0 %
Odporność na działanie środków odladzających	8 %	< 25,0 %
Wskaźnik rozkładu porów w betonie	0,12 mm	< 0,200 mm

Tablica Z2.6: Wyniki badań betonu na podstawie zarobów próbnych

Z przedstawionego zestawienia wyników badania betonu w próbkach kontrolnych, formowanych na budowie odcinka nawierzchni, wynika że:

- średnia wytrzymałość f_{c28} wynosiła od 40,1 do 60,8 MPa,

- średnia wytrzymałość fzg28 wynosiła od 3,9 do 6,3 MPa,

- średnia nasiąkliwość wynosiła od 3,9 do 4,6%,

W większości przypadków próbki betonu uzyskały wytrzymałość na ściskanie wymaganą dla betonu klasy B40, natomiast wytrzymałość na rozciąganie przy zginaniu stawiana w ST min. 5,8 MPa nie została osiągnięta. Nasiąkliwość betonu w próbkach spełniała wymagania SST.

Mrozoodporność betonu w próbkach: spadek wytrzymałości w granicach od 4,0 do 13,1%, przy czym około ³/₄ wyników nie przekraczało 10%.

Odporność na działanie środków odladzających: powierzchnia złuszczeń wynosiła od 3% do 18%, zatem spełniała wymaganie SST: <25%. Oznaczenie odporności na działanie środków odladzających przeprowadzono jedynie wyrywkowo – na 6 próbkach, w odróżnieniu od licznych badań mrozoodporności betonu. Również wyrywkowo, na 6 próbkach przeprowadzono oznaczenie rozkładu porów w betonie, uzyskując korzystne wskaźniki rozkładu porów \leq 0,20mm.

W podsumowaniu sprawozdania [1] stwierdzono, że analiza wyników badań betonu na odcinku Wolbórz-Polichno wykazała że:

1. Zbadany beton uzyskał wymaganą wytrzymałość na ściskanie i osiągnął wymaganą klasę B40.

2. Zbadany beton nie uzyskiwał wymaganej wytrzymałości na rozciąganie przy zginaniu na obu wykonywanych odcinkach.

3. Beton wbudowany w obie jezdnie uzyskał bardzo dobre wyniki badań trwałościowych, uzyskał klasę mrozoodporności F150, spełnił kryterium nasiąkliwości i wykazał się bardzo dobrą odpornością na działanie środków odladzających.

Bibliografia

[1] Analiza wybranych właściwości mieszanki betonowej i betonu stosowanego do budowy betonowych nawierzchni drogowych wykonanych w kraju w latach 2001-2004. Badania i analiza trwałości betonu stosowanego do nawierzchni drogowych pod kątem oceny cech użytkowych i trwałościowych. Etap I. IBDiM, Warszawa, listopad 2004, 96 str.

Załącznik 3:

Widok przekazanych odwiertów i wyniki analizy makroskopowej betonu

Nawierzchnia dwuwarstwowa. Odspojona górna warstwa (50-60 mm) z drobniejszym kruszywem, pęknięta na 3 części. Na granicy warstw odspojone ziarno kruszywa grubego (długość 40 mm) z warstwy dolnej. Rysy w ziarnach kruszywa grubego w dolnej części rdzenia, prawdopodobny żel w rysach

ANAL	IZA MAKROSKOPOWA		
Przekrój			
		· · · · · ·	
1 2 1 8 1 8 3 0 3 1 3 3 3 3 3 4 3 2 3 7 4 3 2 3 7 4 3 2 3 7 4 3 8 3	8 9 1 0 1 1 1 5 1 3 1 4 1 9 1 9	(cm 1 5 3 4 2 6 1	
the second se			
	1 6 68 ->1		
		AR SOMERY	
		2 2010	
	100 5 - DE 18		
	16 2 1 Par 30		
	A A BASSA		
	3		
Kruszywo grube	góra (0-140 mm)	dół (140-286 mm)	
Rodzaj:	natu	ralne	
Zawartość objętościowa: [%]	52	51	
Max rozmiar: [mm]	2	6	
Klasa petrograficzna:	łam	ane	
Kształt ziarna w przekroju:	wielo	katne	
Orientacia:	br	ak	
Kierunek			
Bozkład:	równou	mierny	
Zanjeczyszczenia:	br	ak	
	góra (0-140 mm)	dół (140-286 mm)	
2-5 mm [liczha porów] (średnio 9.6 mm2):	6	7	
2-5 mm, [liczba porów] (srednio 3,0 mm):	0	2	
5-10 mm, [liczba porów] (srednia zaw.):		51	
Any rozmiar: [mm]	-	16	
	0	10	
Zawartosc. [%]	1,/		
ROZKIAU:	rownomierny	w doinej części	
Rysy			
Duze rysy: [liczba]		<u>/</u>	
Orientacja:	prostopadła i równoległa do powierzchni jezdni		
Umiejscowienie:	widoczna na powierzchni i 7	5 mm od gornej powierzchni	
Powierzchnia			
Rysy powierzchniowe:	1		
Orientacja rys:	-		
Pory powietrzne - zawartość:	jak w całym przekroju próbki		
Bleeding:			
Obróbka powierzchni:	br	ak	
Uwagi:			
Na powierzchni siatka rys o głębokości do 16 n	nm. Beton niedostatecznie zawi	browany w dolnej części	
rdzenia. Drobne rysy w kruszywie grubym i ma	trycy cementowej, biały żel w r	ysach i porach.	

Siateczka drobnych rys i odspojenia na górnej powierzchni. Kilka większych porów w próbce. Rysy w ziarnach kruszywa grubego, prawdopodobny żel w rysach

ANALIZA MAKROSKOPOWA			
Przekrój			
	5		
Kruszywo grube	góra (0-150 mm)	dół (150-305 mm)	
Rodzaj:	natu	ralne	
Zawartość objętościowa: [%]	51	46	
Max rozmiar: [mm]	2	.6	
Klasa petrograficzna:	łam	ane	
Kształt ziarna w przekroju:	wielo	katne	
Orientacja:	br	ak	
Kierunek:		_	
Rozkład:	równo	mierny	
Zanieczyszczenia:	br	ak	
Uwięzione powietrze	góra (0-150 mm)	dół (150-305 mm)	
2-5 mm, [liczba porów] (średnio 9,6 mm ²):	13	18	
5-10 mm, [liczba porów] (średnio 44 mm ²):	1	15	
>10 mm, [liczba porów] (średnia zaw.):	-	5	
Max. rozmiar: [mm] (średnica)	7	50	
Zawartość: [%]	1,1	23,8	
Rozkład:	równomierny	w dolnej części	
Rysy			
Duże rysy: [liczba]		4	
Orientacja:	prostopadła i 3 równoleg	głe do powierzchni jezdni	
Umiejscowienie:	widoczna na powierzchni or	az 25, 70 i 140 mm od górnej	
	powie	rzchni	
Powierzchnia			
Rysy powierzchniowe:		3	
Orientacja rys:	siatka		
Pory powietrzne - zawartość:	mniejsza niż w całym przekroju		
Bleeding:		-	
Obróbka powierzchni:		-	
Uwagi:			
Rysy powierzchniowe przechodzące wzdłuż l	<ruszywa 2<="" grubego="" głębokość="" na="" td=""><td>0 mm. Główna rysa równoległa</td></ruszywa>	0 mm. Główna rysa równoległa	
przechodząca przez kruszywo i matrycę znaj	duje się na głębokości 70 mm i pr	zechodzi przez całą szerokość	
rdzenia – podobnie jak w rdzeniu nr 8. Betor	n niedostatecznie zawibrowany w	dolnej części rdzenia. Rysy w	

ANALIZA MAKROSKOPOWA			
Przekrój			
Kruszywo grube	góra (0-135 mm)	dół (135-276 mm)	
Rodzaj:	natu	ralne	
Zawartość objętościowa: [%]	52	56	
Max rozmiar: [mm]	1ax rozmiar: [mm] 26		
Klasa petrograficzna:	łam	iane	
Kształt ziarna w przekroju:	tałt ziarna w przekroju: wielokątne		
Orientacja:	br	ak	
Kierunek:	ierunek:		
Rozkład:	równomierny		
Zanieczyszczenia:	br	ak	
Uwięzione powietrze	góra (0-135 mm)	dół (135-276 mm)	
2-5 mm, [liczba porów] (średnio 9,6 mm ²):	5	8	
5-10 mm, [liczba porów] (średnio 44 mm ²):	-	1	
>10 mm, [liczba porów] (średnia zaw.):	-	-	
Max. rozmiar: [mm] (średnica)	5	8	
Zawartość: [%]	0,4	0,9	
Rozkład:	równomierny	równomierny	
Rysy			
Duże rysy: [liczba]		4	
Orientacja:	prostopadła i 3 równole	głe do powierzchni jezdni	
Umiejscowienie:	widoczna na powierzchni ora powie	az 50, 160 i 200 mm od górnej erzchni	
Powierzchnia			
Rysy powierzchniowe:		3	
Orientacja rys:	entacja rys: siatka		
ory powietrzne - zawartość: jak w całym przekroju			
Bleeding:		-	
Obróbka powierzchni:			
Uwagi:			
Siatka rys na górnej powierzchni, głębokość i 180 mm od górnej powierzchni (niewidoczny rysach i porach.	rys 20-30 mm. Pręt stalowy o śre / na przekroju). Spękane ziarna k	dnicy ok. 25 mm zlokalizowany ruszywa grubego, biały żel w	

AN	ANALIZA MAKROSKOPOWA			
Przekrój				
- OF 17 OF OF LT OF TT TT OF CIT OF				
	A CARE AN			
	No Altonia			
	174 18 9.20			
	and the second			
	A Star Soll			
	Charles and the set			
		SCENE IN		
	7			
	,			
Kruszywo grube	góra (0-125 mm)	dół (125-254 mm)		
Rodzaj:	nati	uralne		
Zawartość objętościowa: [%]	55	55		
Max rozmiar: [mm]	1ax rozmiar: [mm] 26			
Klasa petrograficzna:				
Kształt ziarna przekroju:	wield	okątne		
Orientacja:	b	rak		
Kierunek:	Kierunek:			
Rozkład:	lozkład: równomierny			
Zanieczyszczenia:	b	rak		
Uwięzione powietrze	góra (0-125 mm)	dół (125-254 mm)		
2-5 mm, [liczba porów] (średnio 9,6 mm ²):	3	12		
5-10 mm, [liczba porów] (średnio 44 mm²):	1	2		
>10 mm, [liczba porów] (średnia zaw.):	-	-		
Max. rozmiar: [mm] (średnica)	6	6		
Zawartość: [%]	0,6	1,6		
Rozkład:	równomierny	równomierny		
Rysy				
Duże rysy: [liczba]	3	3		
Orientacja:	prostopadła i 2 równoleg	głe do powierzchni jezdni		
	widoczna na powierzchni oraz 80 i 155 mm od górnej			
Umiejscowienie:	powie	rzchni		
Powierzchnia				
ysy powierzchniowe: 4				
rientacja rys: siatka				
Pory powietrzne - zawartość: mniej niż w całym przekroju				
Bleeding:		-		
Obróbka powierzchni:		-		
Uwagi:				
Siatka rys na górnej powierzchni, głębokość	rys 5-12 mm. Spękane ziarna kru	iszywa grubego, biały żel w		
rysach i porach.				

ANAI	LIZA MAKROSKOPOWA		
Przekrój			
11 J J 8 J 10 310 311 313 313 314 312 319 314 313 3	[9]] 9]] ∳]] 8]] 7]] 7]] 1]] 0]] 1] 9]]		
	TO SR THE	8	
	Solar 1 here	Dis see	
	TARA AND		
and down in the			
A A 1/2 // 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /		and the second second	
		a state and the state of the st	
and the share	the second		
	8		
Kruszywo grube	góra (0-125 mm)	dół (125-254 mm)	
Rodzaj:	natu	uralne	
Zawartość objętościowa: [%]	55	53	
Max rozmiar: [mm]		26	
Klasa petrograficzna:	łan	nane	
Kształt ziarna w przekroju:	ztałt ziarna w przekroju: wielokątne		
Orientacja:	b	rak	
Kierunek:		-	
Rozkład:	równomierny		
Zanieczyszczenia:	b		
Uwięzione powietrze	gora (0-125 mm)	dof (125-254 mm)	
2-5 mm, [liczba porów] (srednio 9,6 mm ²):	-	2	
5-10 mm, [liczba porów] (srednio 44 mm ⁻):	I	-	
>10 mm, [lic2bd porow] (srednid zdw.).	-	-	
Zawartość: [%]	0.4	0.2	
Zawai tosc. [/6] Bozkład:	w części środkowej	0,2	
Rvsv			
Duże rysy: [liczba]		3	
Orientacia:	równoległe do p	owierzchni iezdni	
Umieiscowienie:	70. 100 i 170 mm o	d górnei powierzchni	
Powierzchnia		- 8	
Rysy powierzchniowe:		4	
Orientacja rys:	a rys: siatka		
Pory powietrzne - zawartość:	jak w całym przekroju		
eeding:			
Obróbka powierzchni:		-	
Uwagi:			
Główna rysa równoległa przechodząca przez ł	kruszywo i matrycę znajduje się	na głębokości 70 mm i	
przechodzi przez całą szerokość rdzenia – poc	lobnie jak w rdzeniu nr 5. Siatka	a rys i odspojenia na górnej	
powierzchni, głębokość rys 23-35 mm. Rysy w	v kruszywie grubym i matrycy ce	ementowej, biały żel w rysach i	
porach			

Rdzeń pęknięty wzdłuż na 2 części. Siatka drobnych rys i odspojenia na górnej powierzchni rdzenia. Kilka większych porów. Rysy w ziarnach kruszywa grubego, prawdopodobny żel w rysach.

ANALIZA MAKROSKOPOWA			
Przekrój			
Kruszywo grube	góra (0-150 mm)	dół (150-299 mm)	
Rodzaj:	natur	alne	
Zawartość objętościowa: [%]	50	51	
Max rozmiar: [mm]	26	5	
Klasa petrograficzna:	ilasa petrograficzna:		
Kształt ziarna w przekroju:	t ziarna w przekroju: wielokątne		
Orientacja:	bra	ık	
Kierunek:	-		
Rozkład:	równomierny		
Zanieczyszczenia:	bra	ik	
Uwięzione powietrze	góra (0-150 mm)	dół (150-299 mm)	
2-5 mm, [liczba porów] (średnio 9,6 mm ²):	7	12	
5-10 mm, [liczba porów] (średnio 44 mm ²):	2	3	
>10 mm, [liczba porów] (średnia zaw.):	1	1	
Max. rozmiar: [mm] (średnica)	12	12	
Zawartość: [%]	1,8	2,4	
Rozkład:	w środkowej c	zęści rdzenia	
Rysy			
Duże rysy: [liczba]	2		
Orientacja:	równoległe do po	wierzchni jezdni	
Umiejscowienie:	50 i 120 mm od górnej powie krusz	erzchni, przechodzące przez ywo	
Powierzchnia			
Rysy powierzchniowe:	4		
Orientacja rys:	siatka		
ory powietrzne - zawartość: mniejsza niż w całym przekroju			
Bleeding:	-		
Obróbka powierzchni:	-		
Uwagi:			
Duża rysa, siatka drobnych spękań i odspojen stalowym o średnicy 20 mm umiejscowiony śladu. Rysy w kruszywie grubym, prawdopod	nia na górnej powierzchni, głęboko ok. 130 mm od górnej powierzchn lobny żel w rysach i porach.	ość rysy 20 mm. Ślad po pręcie i. Rysy podłużne w okolicy	

Załącznik 4

Wyniki cyfrowej analizy cienkich szlifów z betonu nawierzchniowego

Oszacowanie zawartości kryptokrystalicznego kwarcu w kruszywie kwarcytowym

Metoda badania i próbki:

Do określenia wymiarów ziaren kwarcu w kwarcycie wykorzystano cyfrowe obrazy cienkich szlifów w świetle przechodzącym ze skrzyżowanymi nikolami i płytką gipsową. Kruszywo kwarcytowe charakteryzowało się wymiarami 15-30 mm (analiza makroskopowa), maksymalnie 2 duże ziarna kruszywa były analizowane na jednym szlifie, lub fragmenty dwóch ziaren, Tabela Z4.1.

Nr szlifu liczba ziaren kwarcytu	liczba ziaren kwarcytu	wymiary widocznych fragmentów		
	nezou ziaren Kwareyta	ziaren kwarcytu		
3A	1	13x18 mm		
5A	2	10x25mm, 8x16 mm		
6A	brak na szlifie	-		
7A	2	12x15mm, 8x11 mm		
8A	2			
10A	2	12x18 mm, 6x18 mm		

Tabela Z4.1. Zestawienie ziaren kruszywa kwarcytowego poddanych analizie

Zawartość mikro- i kryptokrystalicznego kwarcu 3,01%

Rys. Z4.1. Ilustracja wyznaczania zawartości mikro- i kryptokrystalicznego kwarcu w kruszywie kwarcytowym, a) obraz pierwotny XPL_G, b) obraz końcowy- kolor biały wskazuje mikro- i kryptokrystaliczny kwarc; (8A)

Wyniki cyfrowej analizy obrazów

Tabela Z4.2. Oszacowanie zawartości kryptokrystalicznego kwarcu w kruszywie kwarcytowym z podziałem na spękane i niespękane ziarna, szlif 3A

Numer obrazu	Udział powierzchni kryptokrystalicznego kwarcu, do całkowitej powierzchni ziarna [%]	
Numer obrazu	Spękane ziarno kwarcytu	
1	17,09	
2	10,58	
3	13,84	
4	13,83	
5	11,14	
6	20,03	
7	14,82	
8	16,05	
Średnia	14,67	

Tabela Z4.3. Oszacowanie zawartości kryptokrystalicznego kwarcu w kruszywie kwarcytowym z podziałem na spękane i niespękane ziarna, szlif 5A

Numer obrazu	Udział powierzchni kryptokrystalicznego kwarcu do całkowitej powierzchni ziarna [%]	
	Niespękane ziarno kwarcytu	Spękane ziarno kwarcytu
1	4,59	22,86
2	8,85	26,21
3	7,8	19,87
4	6,51	20,04
5	6,55	21,55
6	6,18	22,09
7	5,44	23,26
8	5,02	25,72
Średnia	6,37	22,70

Tabela Z4.4. Oszacowanie zawartości kryptokrystalicznego kwarcu w kruszywie kwarcytowym z podziałem na spękane i niespękane ziarna, szlif 7A

Nama a la sere	Udział powierzchni kryptokrystalicznego kwarcu do całkowitej powierzchni ziarna [%]	
Numer obrazu	Niespękane ziarno kwarcytu, żel obok ziarna	Spękane ziarno kwarcytu
1	7,55	10,33
2	6,11	8,73
3	9,22	7,94
4	9,6	8,15
5	6,52	10,21
6	4,31	8,93
7	6,25	9,83
8	9,9	12,06
Średnia	7,43	9,52

Tabela	Z4.5.	Oszacowanie	zawartości	kryptokrystalicznego	kwarcu	W	kruszywie
kwarcyt	owym z	podziałem na s	pękane i nies	pękane ziarna, szlif 8A			

Numer obrazu	Udział powierzchni kryptokrystalicznego kwarcu do całkowi powierzchni ziarna [%]	
	Niespękane ziarno kwarcytu	Spękane ziarno kwarcytu
1	6,81	33,81
2	4,42	39,66
3	3,78	39,99
4	3,01	35,88
5	6,67	35,83
6	3,31	32,50
7	4,50	27,93
8	5,26	34,77
Średnia	4,70	35,00

Tabela Z4.6. Oszacowanie zawartości kryptokrystalicznego kwarcu w kruszywie kwarcytowym z podziałem na spękane i niespękane ziarna, szlif 10A

	Udział powierzchni kryptokrystalicznego kwarcu do całkowitej		
Numer obrazu	powierzchni ziarna [%]		
	Niespękane ziarno kwarcytu	Spękane ziarno kwarcytu	
1	7,22	9,97	
2	4,45	8,19	
3	5,27	9,88	
4	8,3	12,54*	
5	4,36	13,71*	
6	3,7	10,64*	
7	7,52	14,16*	
8	5,3	9,3	
Średnia	5.77	11.05	

*obraz zebrany przy rysie w kruszywie

Załącznik 5

Zestawienie przeprowadzonych analiz SEM-EDS

<u>Próbki:</u> sześć polerowanych zgładów z odwiertów betonowych oznaczonych 5B, 6A, 7A, 8A, 10A, 10B

Tabela Z5.1. Wyniki analizy SEM-EDS w żelu, próbka 5B

Ouantification results - 5B Mass percent (%) Spectrum Ο Na Mg Al Si Κ Ca 85m* 39.93217 2.561924 0.433355 21.94138 4.589878 14.50697 86m* 39.9154 2.762564 0.419797 21.48038 5.109755 14.53835 0.559288 87m* 41.67407 2.137831 19.72844 3.960543 18.06637 0.598722 24.28336 7.320824 88k 34.57324 0.942237 0.259591 8.882678 34.81855 89k 0.860154 0.395559 5.8922 21.36924 7.322539 6.294894 90k 40.08531 1.721841 0.31861 0.304792 20.08865 7.162234 10.77055 92k 20.33951 30.49454 1.869685 7.042019 11.39245 93k 35.28461 1.251488 22.21364 5.617766 13.49559 95m 39.34541 1.063061 0.693087 1.15152 13.91751 1.884328 25.58388 0.382808 96m* 40.4426 1.38816 0.771863 21.63722 8.215387 9.843789 97m* 38.21715 1.370349 0.388381 21.4882 10.0278 9.703106 98m* 38.24662 1.321544 0.365929 21.0243 10.32712 9.843278 99m* 39.5027 1.550593 0.32804 0.544783 21.69674 8.490571 9.700269 40.30519 0.252102 0.382948 100m* 1.351836 21.83889 8.227467 10.12144 101m* 39.56587 1.549925 0.622361 22.40648 4.719904 13.31741 20.32945 102m* 40.00268 1.45566 5.060205 16.49765 103m* 41.04302 1.146683 0.424072 1.0164 15.55261 1.851783 24.21773 105m* 0.408469 20.74664 37.06368 1.132314 0.215233 8.58678 7.429156 106k* 38.59086 1.320364 0.61144 21.30998 8.476239 9.216143 107k* 1.499147 22.05783 8.396072 39.2907 9.495189 109k* 2.096189 21.30671 6.628962 40.31222 13.07346 110k 1.373795 19.04334 4.065312 18.88771 40.16858

*analiza w mikroobszarze; k-żel w kruszywie, m-żel w matrycy

Tabela Z5.2. Wyniki analizy SEM-EDS w żelu, próbka 6A

Quantification results - 6A

Mass	percent	(%)
------	---------	-----

	. ()						
Spectrum	0	Na	Mg	Al	Si	K	Ca
2k	42.40029	0.892244		0.379162	24.63787	5.023209	9.299248
3k	32.78266	0.656988		0.425843	27.38754	4.257106	7.167299
4k	43.37171	0.972169	0.312001	3.073368	24.73782	5.444995	7.13771
5k*	32.85759	0.599234		1.269103	31.35318	3.06496	3.327675
6k	35.66664	0.352274		0.37349	29.94649	3.475664	5.191778
7k	38.44025	0.306559		0.362886	28.63415	4.001994	6.587948
8k	43.01453	1.43027	0.348389	2.046701	27.29548	5.471088	5.788243
11k*	44.52827	1.480819	0.389662	3.313769	25.04367	5.900809	5.343772
12k*	47.19505	1.828226	0.386964	1.685243	24.58022	5.737832	6.316339
13k*	48.41835	2.039452	0.392757	1.691036	23.71895	6.087	7.017514
14k*	50.06852	2.182835	0.352736	0.758768	23.22024	5.793959	7.310034

15k*	46.07651	1.788839	0.38313	1.950085	25.2934	5.584933	5.807612
16k*	52.55444	2.440059	0.459416	1.787576	24.30132	6.456106	6.802372
18k	50.75789	2.310917	0.367326	2.467078	23.788	6.659971	6.002103
19k	44.76498	1.326098	0.356399	3.909737	25.04326	5.578703	4.746912
20k	49.61745	2.267736	0.40739	1.541486	25.16534	6.457322	6.19262
21k	34.39148	0.667035	0.109546	0.770978	32.05781	2.787797	2.721605
22k	47.38824	2.538495	0.34606	1.862663	23.01823	7.015065	6.547569
23k	57.27195	2.619129	0.526228	3.300655	23.45135	6.057167	6.399181
24k	42.90374	2.552963	0.304915	1.1885	25.43104	6.891369	6.837229
25k	50.16359	3.079612	0.37679	1.552481	23.70705	6.840984	6.817322
26k	47.51144	2.351363	0.292293	0.49023	25.72635	5.841111	6.516413
29k	37.50145	0.309873	0.435142	11.31503	18.24463	4.453429	7.77511
30k	27.55049	0.223722	0.268914	8.131821	17.36732	4.23988	11.23442
31k	25.86181	0.146914	0.250791	9.456588	16.05707	5.195995	11.07768
32k	30.19974	0.169875	0.32414	9.668191	15.77194	4.58656	12.29699
33k	32.02008	0.257093	0.506429	11.23947	22.83132	4.579994	1.928491
34k	33.59916	0.391731	0.759014	11.14913	19.45264	4.273776	6.478123
35k	19.03563	0	0.009929	1.577245	13.67136	1.359608	27.42215

*analiza w mikroobszarze, k-żel w kruszywie

Tabela Z5.3. Wyniki analizy SEM-EDS w żelu, próbka 7A

Quantification results - 7A

Mass percent (%)

Spectrum	0	Na	Mg	Al	Si	Κ	Ca
6k	38.94368	1.747226		0.398443	22.66867	6.825539	8.493346
7k	37.31821	1.927894		0.361289	20.61644	6.944717	10.15155
8k	34.28064	2.213717			21.36065	6.334391	9.538316
9k	42.00662	2.206872			26.21547	4.829814	6.303893
10k	26.39072	0.353428		0.125763	22.86588	5.222147	13.4777
11k	33.96884	0.639656		1.139618	16.61981	1.419147	28.50586
12k	42.48527	1.003382			28.46384	2.484121	5.819742
14k*	40.98144	1.560242		0.811066	18.93434	2.941749	20.9273
15k*	42.16525	2.455892			23.37052	6.27729	10.2215
16k*	43.2438	1.275943			32.45453	2.629277	2.962671
17k*	42.65162	2.829599			26.15082	5.146596	6.240559
18k*	44.24067	0.912767		0.510634	32.88439	2.65932	5.059373
21k	38.93218	1.128122		0.421945	28.579	4.533048	9.900826
22k	44.89246	0.790772		0.445095	31.68207	2.121238	4.430261
23k	38.60104	1.157579			26.75239	4.512556	10.41985
24k	44.36833	0.716729			32.64665	1.557313	3.105732
25k	36.66429	1.086863		0.388628	27.19549	4.757572	11.18721
26k	29.96656	0.592718			29.66913	3.808861	9.16286
27k	44.85798	0.722351			33.78609	1.606711	3.317594
28k	39.53414	1.283129			26.05533	4.331734	10.37525
29k	33.62684	0.724896			30.18457	3.242638	7.714008
30k	36.54098	1.072681			25.53062	3.985689	10.78959
31k	36.85017	1.242035			25.14139	5.252224	12.70881
32k	34.97716	0.610576			31.88498	2.30324	6.36319
33k	38.46157	1.142939			21.87632	3.474192	16.53969
34k	37.26853	1.068992		0.352979	23.28051	3.719623	16.29505
35k	38.6387	0.831171			21.99675	2.289682	20.25018
36k	39.2542	0.724241			17.0334	1.554815	22.76379

38k	42.99587	0.964412		0.619078	19.27074	1.695054	21.99287
39k	36.88638	0.674703		0.530187	17.45051	1.134189	25.4923
41m	40.12196	0.834665		1.001738	17.26167	1.418631	25.44531
42m	37.94788	0.535734		0.834213	16.51568	1.332942	27.28468
43m	38.55502	0.692873	0.166442	1.1914	16.59832	1.385567	24.9774
44m	36.8246	0.684252	0.238918	2.280951	16.68149	1.435824	24.86517
45m	35.92097	0.715052	0.285404	2.221474	15.59016	1.657223	26.50366
46m	39.58294	0.600919	0.168581	1.212447	14.17176	1.336032	27.25087
47m	32.05398	0.430701	0.298113	1.309464	13.73654	1.34689	29.80455
48m	35.87668	0.508406	0.14654	1.109825	14.10872	1.328558	29.61165
52k	36.07909	0.633455			22.249	7.918628	8.536473
53k	32.25857	0.570199	0.110982	0.318716	23.03432	9.632199	10.30048
54k	28.91768	0.595139	0.106122	0.3779	22.70239	9.034422	10.77557
55k	38.80651	0.866516	0.189722	0.403061	23.51905	7.485073	9.045137
62m	35.70463	0.941272	0.116778	0.396365	15.12654	1.476157	25.42409
68m	42.0895	0.621096		0.457015	15.70859	1.021556	27.05153
69m	37.87364	0.527384		0.723508	14.35354	1.220915	29.39863
70m	20.04363	0.23362		0.268591	10.76592	1.132398	37.65124
71m	20.45014	0.448266		0.701341	12.35412	2.87738	33.00017
72m	32.89958	1.246779	0.29808	1.05879	12.44192	2.537214	29.99444
74k	38.00414	1.961603			20.79919	3.937282	14.50221
75k	37.52253	2.363859			22.42338	4.200826	12.29817
76k	37.60883	1.972874		0.445627	23.54728	4.27738	12.46914
77k	36.55103	1.719783	0.243919		22.47917	3.270937	12.67782

*analiza w mikroobszarze; k-żel w kruszywie, m-żel w matrycy

Tabela Z5.4. Wyniki analizy SEM-EDS w żelu, próbka 8A

Quantification results 8A

Mass percent (%)

Spectrum	0	Na	Mg	Al	Si	Κ	Ca
57k	38.91399	0.191468	0.716925	8.356101	16.6498	1.809676	6.358851
65k	35.70708	0.157619	1.151592	2.120004	23.66684	1.640999	7.664662
71k	35.51627	0.389869		0.51551	21.63056	1.624021	18.94676
72k	36.20197	0.594443		1.39572	20.95751	2.67181	16.44071
73k	29.55196	0.326291		0.390781	28.50957	2.13893	9.538935
74k	31.9007	0.342215		0.704988	25.38717	2.691364	11.90321
77k	26.18218	0.251038		0.577788	30.8671	1.001651	5.566223
78k	35.29003	0.600038		0.546857	20.65512	1.840749	19.14938
79k	35.71635	0.666482		0.327459	23.05251	2.582198	16.47558
80k	32.96911	0.675602		0.351991	23.2036	3.916297	14.29357
81k	44.82649	0.854967		0.91448	26.62689	2.724727	10.54005
83k*	39.81954	1.183844		0.597298	23.04986	2.387428	15.22759
84k*	38.28663	1.091209		0.527658	24.45406	2.137579	13.8599
85k*	39.94591	1.746592		0.484993	22.35102	2.461358	16.00202
86k*	38.0818	1.327116		1.027175	21.78555	3.658859	14.41418
87k*	39.22447	1.362339		1.185081	22.21551	3.847856	13.55591
88k*	42.17561	1.318824		0.442279	23.54624	3.381727	12.50888
89k*	39.51433	1.450852		0.655262	23.02638	3.634536	12.64057
90k*	38.63213	1.024552	0.202104	3.648773	26.01419	2.966754	8.255665
93k*	39.27077	1.398243		1.136694	22.60978	3.705631	14.17374
94k*	39.73159	1.49493		0.455216	22.92986	3.753373	13.29693
95k	39.27121	2.560972			19.19418	6.35017	11.27322

96k	36.77424	2.536231			19.02049	7.507916	11.80267
97k	40.94486	2.466081			19.24176	7.309749	11.42147
98m	43.22227	1.206408		0.846371	16.17262	2.874609	22.81592
99m	43.18583	0.678586		1.182468	13.19377	1.003742	28.16868
100m	40.83571	0.650663	0.180723	1.143497	12.28725	0.647047	27.54801
101p	44.31758	0.573213		0.77072	13.32426	0.57188	28.42913
102p	42.91545	0.444172		0.700255	13.21631	0.648259	28.96647
103p	43.22327	0.465293	0.172091	0.93545	12.74733	0.565346	28.423
105k	25.2043	0.882279			17.47206	7.921067	13.2983
106k	31.95839	0.752694			21.45158	5.226726	12.81505
107k	35.86749	0.832655			21.30851	3.687233	13.33523
108k	36.34806	1.147106			21.13597	5.259278	13.51983
109k	29.42404	1.234899			18.64783	7.504486	13.12168
111m	25.70586	0.711275			18.68445	9.252705	15.52627
112m	26.84129	0.466312		0.167244	16.46955	6.79514	19.86836
113m	36.55558	0.750447		0.714753	15.85876	2.900096	24.31171
114m	39.2494	0.489505		0.979719	14.35769	1.197274	28.87299
115m	35.91029	0.237491		0.832432	13.734	1.033053	30.91839
117k*	40.16457	3.921681			19.11392	6.984908	10.89378
118m*	44.14889	1.496638	0.209719	0.8213	16.36407	2.580271	21.2822
119m	40.3258	0.257522		0.415902	13.30486	0.691643	30.29239
124k	39.1419	0.325954		0.751032	13.15351	0.488548	28.77209
125k	39.09724	0.285214		0.849066	12.20518	0.592307	29.42692
127k*	40.84625	1.747121	0.247689	0.472238	20.75799	3.948311	16.78543
128k*	39.83316	1.572062	0.215808	0.46257	20.27565	3.893395	16.92116
129k*	40.45524	1.744326	0.238171	0.635837	20.03728	3.748454	16.50402

Quantification results - 10A

Mass percent (%)								
Spectrum	0	Na	Mg	Al	Si	Κ	Ca	
16p	37.50322	4.382363	0.427349	0.957526	24.35935	4.970823	4.019188	
17m	38.67319	3.267975		1.455781	26.98293	5.273445	2.072501	
19m	30.82509	2.410238		1.258908	25.49354	3.818196	1.898438	
26m	38.75651	4.465228	0.421464	2.521558	18.755	6.144629	5.933342	
27m	31.98046	2.893613		1.760464	17.26344	5.801232	11.28106	
28p	31.36294	2.046126	0.053752	0.75171	19.37383	5.307228	14.48934	
29p	30.35221	3.652774		0.699685	23.80516	6.168273	5.769461	
30p	45.50772	4.215963	0.460637	1.241755	18.63932	4.548193	7.338807	
32k	40.85679	0.577437	0.412051	4.603755	16.62339	2.274626	19.22684	
33m	37.60456	3.564968	0.251093	2.016086	17.05365	5.539129	12.2696	
34m	30.24873	2.586922		0.945885	15.17099	4.465817	16.61547	
36m	34.73284	3.958571		2.174433	18.99588	6.235826	7.615049	
37m	29.94687	2.762446		2.179584	17.81609	6.474987	9.271588	
38m	37.57957	3.080945		1.697077	15.39021	4.668829	16.56306	
42k	36.37798	0.692489	0.348451	3.171196	15.87097	2.058016	21.41011	
43k	40.44234	0.601609		1.933124	18.41822	1.332	19.50971	
44p	42.81951	1.69062	0.20921	0.841889	8.131359	2.08087	28.4292	
45p	37.21627	2.8592	0.229098	1.168403	19.27162	5.071332	11.40124	
46m	45.34666	0.840191		0.514177	10.24513	0.780424	28.00504	
48p	36.12317	2.602099		0.81632	18.87309	4.86814	14.29494	
49p	36.17709	5.082794		0.857097	23.65126	6.147144	5.235036	

45.61124	4.33295	0.294234	1.126753	19.10136	4.877244	8.340517
38.1737	3.492823	0.20029	0.839499	19.25197	4.896841	13.07608
24.46216	0.708486			23.50829	6.092525	11.26113
36.51168	2.463582			19.05163	5.730076	11.34026
23.9088	0.682861			18.17936	7.258105	15.40208
32.58216	0.869687			22.04095	5.229346	14.00209
35.92985	1.14766		0.344337	18.4972	4.410619	19.06214
30.20577	0.340472		0.969047	11.71279	1.41767	30.21509
31.94692	0.571571		1.036843	11.40757	1.217619	30.04041
41.32229	1.28611			18.96656	4.427436	16.27235
39.5921	1.631873			20.5893	5.180138	12.55135
40.77018	1.586927			18.86737	4.510703	16.17037
29.95287	0.863569			21.9014	5.265077	16.10525
34.66107	1.779816			23.16056	4.524875	11.22126
28.42585	1.090671			21.82204	5.625997	11.50374
27.03378	1.446299			20.99979	6.750185	10.99891
41.55181	2.050321			24.86847	5.087226	6.858173
36.72058	1.434633			21.48543	7.471542	9.268645
34.88052	1.086427			21.63555	9.442905	9.837864
34.79494	0.92479			21.78492	10.09835	10.20253
35.77871	1.038604		0.40224	23.24973	8.021717	9.556502
42.2361	1.022613		1.051614	14.19802	1.219481	27.48331
41.75662	1.140914		1.009664	14.60832	1.398117	26.70208
40.50555	1.009156		1.572938	13.34642	1.251953	26.63276
42.93602	2.449367		1.251677	11.27369	2.848653	22.76645
	45.61124 38.1737 24.46216 36.51168 23.9088 32.58216 35.92985 30.20577 31.94692 41.32229 39.5921 40.77018 29.95287 34.66107 28.42585 27.03378 41.55181 36.72058 34.88052 34.79494 35.77871 42.2361 41.75662 40.50555 42.93602	45.611244.3329538.17373.49282324.462160.70848636.511682.46358223.90880.68286132.582160.86968735.929851.1476630.205770.34047231.946920.57157141.322291.2861139.59211.63187340.770181.58692729.952870.86356934.661071.77981628.425851.09067127.033781.44629941.551812.05032136.720581.43463334.880521.08642734.794940.9247935.778711.03860442.23611.02261341.756621.14091440.505551.00915642.936022.449367	45.611244.332950.29423438.17373.4928230.2002924.462160.70848636.511682.46358223.90880.68286132.582160.86968735.929851.1476630.205770.34047231.946920.57157141.322291.2861139.59211.63187340.770181.58692729.952870.86356934.661071.77981628.425851.09067127.033781.44629941.551812.05032136.720581.43463334.880521.08642734.794940.9247935.778711.03860442.23611.02261341.756621.14091440.505551.00915642.936022.449367	45.61124 4.33295 0.294234 1.126753 38.1737 3.492823 0.20029 0.839499 24.46216 0.708486 0.30298 36.51168 2.463582 2.39088 0.682861 32.58216 0.869687 0.344337 30.20577 0.340472 0.969047 31.94692 0.571571 1.036843 41.32229 1.28611 2.995287 29.95287 0.863569 2.42585 34.66107 1.779816 2.842585 27.03378 1.446299 2.446299 41.55181 2.050321 2.050321 36.72058 1.434633 2.434633 34.88052 1.086427 2.43944 34.79494 0.92479 0.40224 42.2361 1.022613 1.051614 41.75662 1.140914 1.009664 40.50555 1.009156 1.572938 42.93602 2.449367 1.251677	45.611244.332950.2942341.12675319.1013638.17373.4928230.200290.83949919.2519724.462160.70848623.5082936.511682.46358219.0516323.90880.68286118.1793632.582160.86968722.0409535.929851.147660.34433730.205770.3404720.96904731.946920.5715711.03684311.477571.322291.2861139.59211.63187320.589340.770181.58692718.8673729.952870.86356921.901434.661071.77981623.1605628.425851.09067121.8220427.033781.44629920.9997941.551812.05032124.8684736.720581.43463321.4854334.880521.08642721.6355534.794940.9247921.7849235.778711.0386040.4022441.756621.1409141.00966444.6083240.505551.00915642.936022.4493671.25167742.936022.4493671.251677	45.611244.332950.2942341.12675319.101364.87724438.17373.4928230.200290.83949919.251974.89684124.462160.70848623.508296.09252536.511682.46358219.051635.73007623.90880.68286118.179367.25810532.582160.86968722.040955.22934635.929851.147660.34433718.49724.41061930.205770.3404720.96904711.712791.4176731.946920.5715711.03684311.407571.21761941.322291.2861118.966564.42743639.59211.63187320.58935.18013840.770181.58692718.867374.51070329.952870.86356921.90145.26507734.661071.77981623.160564.52487528.425851.09067121.822045.62599727.033781.44629920.999796.75018541.551812.05032124.868475.08722636.720581.43463321.485437.47154234.880521.08642721.635559.44290534.794940.9247921.7849210.0983535.778711.0386040.4022423.249738.02171742.23611.0226131.05161414.198021.21948141.756621.1409141.00966414.608321.39811740.505551.0091561.57293813.346421.25195342.93602<

*analiza w mikroobszarze; k-żel w kruszywie, p-żel w porze, m-żel w matrycy

Tabela Z5.6. Wyniki analizy SEM-EDS w żelu, próbka 10B

Quantification results - 10B

Mass percent (%)								
Spectrum	0	Na	Mg	Al	Si	Κ	Ca	
102k	44.00431	1.898237	0.339156		21.45714	8.614795	9.399574	
103k	41.23261	3.826111			20.20662	7.634829	9.12402	
104k	42.44636	3.701544		0.441143	21.3215	7.90324	9.287805	
105k	39.17133	1.260947	0.454548		22.24113	3.475666	12.47151	
106k	40.76449	4.00667			19.12632	7.377654	9.790064	
107k	41.42712	2.942056			20.08259	7.016362	10.54926	
108k	40.9227	2.309547	0.281518		21.32217	4.914101	11.74576	
109k	41.7316	1.941447	0.330706		21.05321	8.122079	9.215432	
112k*	40.30585	3.141377			20.08113	7.191301	9.321173	
113k*	40.75077	3.33377			19.38627	6.755768	9.239846	
114k*	42.0769	1.594404	0.266983		21.61418	8.208821	9.106042	
115k*	41.85945	1.628678	0.322537		20.94598	7.920586	9.213023	
116k*	42.23031	2.016403	0.319336		21.76001	8.125497	9.064993	
117k*	42.24421	2.417129	0.348113	0.462508	21.37346	7.792106	9.375155	
119k*	42.37486	3.401379		0.740634	21.1731	7.400298	9.035957	
120k	41.06873	0.997108			24.10137	6.584636	8.517357	
121k	40.35188	0.990009			24.51719	6.588254	8.380152	
122k	35.925	2.313476			23.68509	5.005542	8.441615	
123k*	41.35472	2.843229			20.33481	7.310431	9.407166	
124k*	42.36245	1.497465	0.350602		21.31715	8.414742	9.456405	
125k*	44.93492	2.970688			21.10007	6.907109	9.222872	

126k	37.68803	1.026644		0.416746	22.58265	7.632253	9.463287
127k	38.02157	1.072209	0.234218	0.403807	22.09282	7.851776	9.697573
128k	33.96254	1.20369			20.7178	6.747946	14.0889
129k	36.25811	1.351154			20.82607	5.42233	15.11899
130k	36.38132	0.951386		0.336726	19.51404	3.449458	21.60188
131k	41.45451	3.288697	0.332989	1.778051	12.98682	2.898632	22.87084
134p	34.06267	0.628766		0.916811	14.32997	1.39549	30.02696
135p	34.42348	0.713044		1.018632	14.3262	1.161967	26.44049
136p	36.83749	0.569065		0.857231	13.15397	1.091183	26.61522
137k	42.54158	1.021005		0.811082	14.17694	1.784472	27.03622
138k	38.91395	1.11993		0.928181	14.4529	2.242977	26.9256
139k	39.89833	0.821256	0.193865	0.6214	17.13289	4.898305	21.5596
140k	34.30844	0.644677	0.133986	0.395652	28.96094	4.531591	8.012009
141k	34.93799	0.99273	0.1154	1.308777	21.4305	9.28447	9.416972
143m	30.61283	0.425166		1.350094	21.40615	0.743066	16.44029
145k*	41.42676	2.200112	0.297181	0.567158	22.43867	8.285484	9.614574
146k*	39.06229	4.727724			20.13228	8.096316	8.893916
147k*	39.20544	4.399463			20.10472	7.911316	9.597376
148k*	39.81486	4.274924			19.29586	7.521904	9.873517
149k*	39.28049	4.272848			19.69806	7.740551	9.580916
150k*	42.47255	2.099827			20.89582	8.413577	8.916942
151k*	41.2727	2.202738			20.55667	8.312045	9.186928
152k*	38.70237	3.673995			20.56068	7.71541	9.848324
153m*	40.88878	1.753666		0.872332	16.69863	2.940122	22.53583
154m*	42.96219	1.053691		0.84478	14.68884	1.6862	26.34416
155m*	43.36822	0.928162		0.925307	14.01252	1.246031	27.94818
156m*	42.98304	0.829184		0.977947	13.50837	1.107509	27.76032
157k*	39.73733	4.040155			20.05073	7.843755	9.602612
158k*	40.18399	3.610693			20.32582	7.649182	10.28924
159m*	42.4208	2.32351		0.595016	19.84746	4.676471	16.87813
160m*	42.37411	1.436034		0.955323	15.5266	2.406664	24.75609
161m*	42.81503	1.06236	0.269833	0.920087	14.90487	1.636789	26.86882
162m*	42.94581	0.846913		0.96111	14.04198	1.255001	27.71869
163k	36.92942	1.01586			23.59811	7.238249	9.309459
164k	37.51747	0.859375		0.367621	24.79653	7.758683	9.773367
165k	36.91434	2.552238	0.505262	0.358649	19.40074	6.514349	11.77129
166k	21.21137	1.162343		0.415931	21.31517	7.319442	10.47685
167k	24.81739	1.508708			19.83341	7.581663	12.36034
168k	27.01416	0.546013			20.55971	7.969381	15.66844
169k	25.93882	1.732095			19.69936	8.537341	12.5734
170m	27.29879	0.313169			19.02508	6.130228	19.60085
171m	26.41535	0.694028		0.715011	17.04785	3.187219	28.75302
172m	26.40583	0.224327			19.0949	6.074411	19.68711
174k	32.27979	0.535723		0.559924	35.33967	2.530105	2.984764
175k	35.02655	0.94484		0.395566	25.4559	6.859196	8.816721
176k	30.47351	2.021629			19.6915	8.173588	11.64503
177k	27.40297	1.670648			18.69518	8.276983	11.76446
178k	30.86994	1.674195			20.33179	7.798541	12.53076
179k	31.48429	1.258303			20.78294	7.451697	13.90651
180k	35.14273	1.071914		0.372534	20.07133	5.132015	18.98585
183k*	41.01942	2.299476	0.391883	0.525289	23.76602	7.700888	9.070038
184k*	43.10937	4.482834			20.35578	7.848818	10.49812

*analiza w mikroobszarze; k-żel w kruszywie, p-żel w porze, m-żel w matrycy

Załącznik 6 Szczegółowe wyniki pomiarów charakterystyki porów w betonie w odwiertach

Tablica Z6.1. Charakterystyka porów powietrznych w próbce betonu 5G (odwiert #5, część górna
--

	Calkowita dlugosc lini pomiarowej, Ttot=		1207,62	mm						
Kolumna	1	2	3	4	5	6	7	8	9	10
Przedmiot	Klasa	Granice klasy	Liczba cieciw zarejestrowana w klasie	Czestosc wystepowania cieciw	Udzial porow zliczonych	Potencjalna liczba cieciw	Liczba porow w klasie	Objetosc pojedynczego pora	Zawartosc powietrza	Skumulowana zawartosc powietrza
Jednostki		μm		mm ⁻¹	mm ²	mm ⁻³	mm ⁻³	mm ³	%	%
	1	0 do 10	2	0,001656151	0,0001178	14,05900939	-19,0760659	0,00000524	-0,0010	0,00
	2	15 do 20	11	0,009108832	0,0002749	33,13507525	25,46770809	0,000004190	0,0107	0,01
	3	25 do 30	4	0,003312303	0,000432	7,66736716	-21,8565526	0,000014100	-0,0308	-0,02
	4	35 do 40	21	0,017389589	0,000589	29,52391973	16,20545325	0,000033500	0,0543	0,03
	5	45 do 50	12	0,009936908	0,0007461	13,31846648	5,067048321	0,000065400	0,0331	0,07
	6	55 do 60	9	0,007452681	0,0009032	8,251418157	3,162278936	0,000113000	0,0357	0,10
	7	65 do 80	14	0,011593059	0,002278	5,089139221	0,814832683	0,000268000	0,0218	0,12
	8	85 do 100	15	0,012421135	0,002906	4,274306538	2,399771952	0,000524000	0,1257	0,25
	9	105 do 120	8	0,006624605	0,003534	1,874534586	-0,11459742	0,000905000	-0,0104	0,24
	10	125 do 140	10	0,008280757	0,004163	1,989132004	0,606413318	0,001440000	0,0873	0,33
	11	145 do 160	8	0,006624605	0,004791	1,382718686	0,924289648	0,002140000	0,1978	0,52
	12	165 do 180	3	0,002484227	0,005419	0,458429039	0,321502712	0,003050000	0,0981	0,62
	13	185 do 200	1	0,000828076	0,0060476	0,136926327	-0,11114906	0,004190000	-0,0466	0,58
	14	205 do 220	2	0,001656151	0,006676	0,24807539	0,134702492	0,005580000	0,0752	0,65
	15	225 do 240	1	0,000828076	0,007304	0,113372899	-0,40854545	0,007240000	-0,2958	0,36
	16	245 do 260	5	0,004140378	0,007933	0,521918349	0,328465329	0,009200000	0,3022	0,66
	17	265 do 280	2	0,001656151	0,008561	0,19345302	-0,16701086	0,011500000	-0,1921	0,47
	18	285 do 300	4	0,003312303	0,009189	0,360463882	0,231680732	0,014100000	0,3267	0,79
	19	305 do 350	4	0,003312303	0,02572	0,12878315	0,044998092	0,022400000	0,1008	0,89
	20	355 do 400	3	0,002484227	0,02965	0,083785058	0,05912527	0,033500000	0,1981	1,09
	21	405 do 450	1	0,000828076	0,03358	0,024659787	0,00257777	0,047700000	0,0123	1,10
	22	455 do 500	1	0,000828076	0,0375	0,022082017	0,013675158	0,065400000	0,0894	1,19
	23	505 do 1000	6	0,004968454	0,591	0,008406859	0,008406859	0,524000000	0,4405	1,63
	24	1005 do 1500	0	0	0,9837	0	0	1,770000000	0,0000	1,63
	25	1505 do 2000	0	0	1,376	0	0	4,19000000	0,0000	1,63
	26	2005 do 2500	0	0	1,769	0	0	8,18000000	0,0000	1,63
	27	2505 do 3000	0	0	2,162	0	0	14,10000000	0,0000	1,63
	28	3005 do 4000	0	0	5,502	0		33,500000000	0,0000	1,63
Zawar	tosc zaczy	nu cementowe	go w betonie P=	26,3	%					
Calkowita	dlugosc c	ieciw przypadaj	aca na pory T_=	19,323	mm					
	Cal	kowita zawarto	sc powietrza A=	1.60	%					
	Calkow	ita liczba mierz	onych cieciw N=	147	1.1.1.1					
	P	wierzchnia wła	sciwa porow a=	30.43	mm ⁻¹					
		Stosunek zacz	vn/powietrze R=	16 437						
		Wskaznik ro	zmieszczenia I =	0.26	mm					
		Zawartosc mil	croporow A300=	0.79	%					
		Earran to so thin		0,10						

Tubileu 20.2. Charakter jot jaa poron pontenzin jen n probee betonu 20. (buntert ne, ezebe uonta)	Tablica Z6.2. Charakter	ystyka porów	powietrznych w	próbce betonu 5D (odwiert #5, cz	ęść dolna)
---	-------------------------	--------------	----------------	--------------------	----------------	------------

Calko		ta dlugosc lini p	omiarowej, T _{tot} =	1207,62	mm					
Kolumna	1	2	3	4	5	6	7	8	9	10
Przedmiot	Klasa	Granice klasy	Liczba cieciw zarejestrowana w klasie	Czestosc wystepowania cieciw	Udzial porow zliczonych	Potencjalna liczba cieciw	Liczba porow w klasie	Objetosc pojedynczego pora	Zawartosc powietrza	Skumulowana zawartosc powietrza
Jednostki		μm		mm ⁻¹	mm ²	mm ⁻³	mm ⁻³	mm ³	%	%
	1	0 do 10	5	0,004140378	0,0001178	35,14752348	-13,0489496	0,00000524	-0,0007	0,00
	2	15 do 20	16	0,01324921	0,0002749	48,19647309	34,77858056	0,000004190	0,0146	0,01
	3	25 do 30	7	0,00579653	0,000432	13,41789253	-0,64111686	0,000014100	-0,0009	0,01
	4	35 do 40	10	0,008280757	0,000589	14,05900939	4,070159535	0,000033500	0,0136	0,03
	5	45 do 50	9	0,007452681	0,0007461	9,988849859	6,3215529	0,000065400	0,0413	0,07
	6	55 do 60	4	0,003312303	0,0009032	3,667296959	-2,87588204	0,000113000	-0,0325	0,04
	7	65 do 80	18	0,014905362	0,002278	6,543178999	4,833456384	0,000268000	0,1295	0,17
	8	85 do 100	6	0,004968454	0,002906	1,709722615	-0,63344562	0,000524000	-0,0332	0,13
	9	105 do 120	10	0,008280757	0,003534	2,343168232	0,552949429	0,000905000	0,0500	0,18
	10	125 do 140	9	0,007452681	0,004163	1,790218804	1,271699296	0,001440000	0,1831	0,36
	11	145 do 160	3	0,002484227	0,004791	0,518519507	-0,09271921	0,002140000	-0,0198	0,35
	12	165 do 180	4	0,003312303	0,005419	0,611238718	0,200459738	0,003050000	0,0611	0,41
	13	185 do 200	3	0,002484227	0,0060476	0,41077898	-0,0853718	0,004190000	-0,0358	0,37
	14	205 do 220	4	0,003312303	0,006676	0,496150781	0,269404983	0,005580000	0,1503	0,52
	15	225 do 240	2	0,001656151	0,007304	0,226745798	-0,29517255	0,007240000	-0,2137	0,31
	16	245 do 260	5	0,004140378	0,007933	0,521918349	0,328465329	0,009200000	0,3022	0,61
	17	265 do 280	2	0,001656151	0,008561	0,19345302	0,19345302	0,011500000	0,2225	0,83
	18	285 do 300	0	C	0,009189	0	-0,12878315	0,014100000	-0,1816	0,65
	19	305 do 350	4	0,003312303	0,02572	0,12878315	0,044998092	0,022400000	0,1008	0,75
	20	355 do 400	3	0,002484227	0,02965	0,083785058	0,034465483	0,033500000	0,1155	0,87
	21	405 do 450	2	0,001656151	0,03358	0,049319574	0,027237557	0,047700000	0,1299	1,00
	22	455 do 500	1	0,000828076	0,0375	0,022082017	0,017878588	0,065400000	0,1169	1,11
	23	505 do 1000	3	0,002484227	0,591	0,00420343	0,001678039	0,524000000	0,0879	1,20
	24	1005 do 1500	3	0,002484227	0,9837	0,002525391	0,001923592	1,770000000	0,3405	1,54
	25	1505 do 2000	1	0,000828076	1,376	0,000601799	0,000133695	4,190000000	0,0560	1,60
	26	2005 do 2500	1	0,000828076	1,769	0,000468104	-0,00029792	8,180000000	-0,2437	1,35
	27	2505 do 3000	2	0,001656151	2,162	0,000766027	0,000766027	14,10000000	1,0801	2,43
	28	3005 do 4000	0	C	5,502	0		33,500000000	0,0000	2,43
79/09	tosc zacz		ao w betonie P=	26.3	%					
Calkowita	dugosc c	jeciw przypada	iaca na porv T =	29.429	mm					
Gaitonna	Cal	kowita zawarto	se powietrza A-	2 44	0/_					
	Calkou	vita liozha mierz	onvoh ojeojiv N-	137	70					
	D	nu iozba mierz		40.60						
	P	Steenack rese	isciwa porow α=	10,02	mm					
		Stosunek zacz	yn/powietrze R=	0.25	-					
		Zawartaas	kronorow A200-	0,35	0/					
		/ more tosc mil	A = A = A = A = A = A = A = A = A = A =	U 03	70					

Calkowita dlugosc lini pomiarowej, T _{tot} =			1207,62 mm							
Kolumna	1	2	3	4	5	6	7	8	9	10
Przedmiot	Klasa	Granice klasy	Liczba cieciw zarejestrowana w klasie	Czestosc wystepowania cieciw	Udzial porow zliczonych	Potencjalna liczba cieciw	Liczba porow w klasie	Objetosc pojedynczego pora	Zawartosc powietrza	Skumulowana zawartosc powietrza
Jednostki		μm		mm ⁻¹	mm ²	mm ⁻³	mm ⁻³	mm ³	%	%
	1	0 do 10	6	0,004968454	0,0001178	42,17702818	3.017393795	0,00000524	0.0002	0,00
	2	15 do 20	13	0,010764983	0,0002749	39,15963439	18,0743747	0,000004190	0,0076	0,01
	3	25 do 30	11	0,009108832	0,000432	21,08525969	9,838052175	0,000014100	0,0139	0.02
	4	35 do 40	8	0,006624605	0,000589	11,24720751	2,368229863	0,000033500	0,0079	0,03
	5	45 do 50	8	0,006624605	0,0007461	8,878977652	5,211680693	0,000065400	0,0341	0,06
	6	55 do 60	4	0,003312303	0,0009032	3,667296959	0,032197515	0,000113000	0,0004	0,06
	7	65 do 80	10	0,008280757	0,002278	3,635099444	1,070515521	0,000268000	0,0287	0,09
	8	85 do 100	9	0,007452681	0,002906	2,564583923	0,690049337	0,000524000	0,0362	0,13
	9	105 do 120	8	0,006624605	0,003534	1,874534586	0,681055383	0,000905000	0,0616	0,19
	10	125 do 140	6	0,004968454	0,004163	1,193479202	0,502119859	0,001440000	0,0723	0,26
	11	145 do 160	4	0,003312303	0,004791	0,691359343	-0,37830841	0,002140000	-0,0810	0,18
	12	165 do 180	7	0,00579653	0,005419	1,069667757	-0,02574286	0,003050000	-0,0079	0,17
	13	185 do 200	8	0,006624605	0,0060476	1,095410614	0,475222137	0,004190000	0,1991	0,37
	14	205 do 220	5	0,004140378	0,006676	0,620188476	0,28006978	0,005580000	0,1563	0,53
	15	225 do 240	3	0,002484227	0,007304	0,340118697	-0,18179965	0,007240000	-0,1316	0,40
	16	245 do 260	5	0,004140378	0,007933	0,521918349	0,231738819	0,009200000	0,2132	0,61
	17	265 do 280	3	0,002484227	0,008561	0,29017953	0,109947589	0,011500000	0,1264	0,74
	18	285 do 300	2	0,001656151	0,009189	0,180231941	-0,01294278	0,014100000	-0,0182	0,72
	19	305 do 350	6	0,004968454	0.02572	0,193174725	0,025604609	0,022400000	0,0574	0,78
	20	355 do 400	6	0,004968454	0,02965	0,167570115	0,118250541	0,033500000	0,3961	1,17
	21	405 do 450	2	0.001656151	0,03358	0,049319574	0.027237557	0,047700000	0,1299	1,30
	22	455 do 500	1	0,000828076	0,0375	0,022082017	0,015076301	0,065400000	0,0986	1,40
	23	505 do 1000	5	0.004140378	0,591	0.007005716	0.007005716	0,524000000	0,3671	1,77
	24	1005 do 1500	0	0	0,9837	0	0	1,770000000	0,0000	1,77
	25	1505 do 2000	0	0	1,376	0	0	4,190000000	0,0000	1,77
	26	2005 do 2500	0	0	1,769	0	0	8,18000000	0,0000	1,77
	27	2505 do 3000	0	0	2,162	0	0	14,10000000	0,0000	1,77
	28	3005 do 4000	0	0	5,502	0		33,50000000	0,0000	1,77
Zawa	rtosc zacz	/nu cementowe	ao w betonie P=	26.3	%					
Calkowita	dlugosc c	ieciw przypada	iaca na porv T =	20 772	mm					
California	Ca	kowita zawarto	sc nowietrza A-	1 72	%					
	Calkov	vita liczba mierz	onych cieciw N=	140	70					
	CalkOV		soliva porou:	26.06	mm-1					
	P	Steeppelk r	isciwa porow α=	20,90						
		Slosunek zacz	yn/powietrze R=	15,290						
		VVSKaznik ro	zmieszczenia L=	0,28	mm					
		∠awartosc mi	kroporow A300=	0,72	%					

Tablica Z6.3. Charakterystyka porów powietrznych w próbce betonu 8G (odwiert #8, część górna)

Tablica Z6.4. Charakterystyka porów powietrznych w próbce betonu 8D (odwiert #8, część dolna)

	Calkowita dlugosc lini pomiarowej, T _{tot} =		1207,62	mm						
Kolumna	1	2	3	4	5	6	7	8	9	10
Przedmiot	Klasa	Granice klasy	Liczba cieciw zarejestrowana w klasie	Czestosc wystepowania cieciw	Udzial porow zliczonych	Potencjalna liczba cieciw	Liczba porow w klasie	Objetosc pojedynczego pora	Zawartosc powietrza	Skumulowana zawartosc powietrza
Jednostki		μm		mm ⁻¹	mm ²	mm ⁻³	mm ⁻³	mm ³	%	%
	1	0 do 10	4	0.003312303	0.0001178	28.11801879	19.08118008	0.000000524	0.0010	0.00
	2	15 do 20	3	0,002484227	0,0002749	9,036838705	-2,46421204	0,000004190	-0,0010	0,00
	3	25 do 30	6	0,004968454	0,000432	11,50105074	1,659744165	0,000014100	0,0023	0,00
	4	35 do 40	7	0,00579653	0,000589	9,841306576	4,291945543	0,000033500	0,0144	0,02
	5	45 do 50	5	0,004140378	0,0007461	5,549361033	2,798888314	0,000065400	0,0183	0,03
	6	55 do 60	3	0,002484227	0,0009032	2,750472719	-0,88462672	0,000113000	-0,0100	0,02
	7	65 do 80	10	0,008280757	0,002278	3,635099444	2,495284367	0,000268000	0,0669	0,09
	8	85 do 100	4	0,003312303	0,002906	1,139815077	0,67118143	0,000524000	0,0352	0,13
	9	105 do 120	2	0,001656151	0,003534	0,468633646	-0,12810595	0,000905000	-0,0116	0,12
	10	125 do 140	3	0,002484227	0,004163	0,596739601	0,25105993	0,001440000	0,0362	0,15
	11	145 do 160	2	0,001656151	0,004791	0,345679672	0,192869992	0,002140000	0,0413	0,19
	12	165 do 180	1	0,000828076	0,005419	0,15280968	-0,12104297	0,003050000	-0,0369	0,16
	13	185 do 200	2	0,001656151	0,0060476	0,273852653	0,025777263	0,004190000	0,0108	0,17
	14	205 do 220	2	0,001656151	0,006676	0,24807539	-0,20541621	0,005580000	-0,1146	0,05
	15	225 do 240	4	0,003312303	0,007304	0,453491595	0,244724256	0,007240000	0,1772	0,23
	16	245 do 260	2	0,001656151	0,007933	0,20876734	0,01531432	0,009200000	0,0141	0,24
	17	265 do 280	2	0,001656151	0,008561	0,19345302	0,013221079	0,011500000	0,0152	0,26
	18	285 do 300	2	0,001656151	0,009189	0,180231941	0,148036154	0,014100000	0,2087	0,47
	19	305 do 350	1	0,000828076	0,02572	0,032195787	0,032195787	0,022400000	0,0721	0,54
	20	355 do 400	0	0	0,02965	0	-0,02465979	0,033500000	-0,0826	0,46
	21	405 do 450	1	0,000828076	0,03358	0,024659787	0,00257777	0,047700000	0,0123	0,47
	22	455 do 500	1	0,000828076	0,0375	0,022082017	0,020680874	0,065400000	0,1353	0,60
	23	505 do 1000	1	0,000828076	0,591	0,001401143	0,001401143	0,524000000	0,0734	0,68
	24	1005 do 1500	0	0	0,9837	0	0	1,770000000	0,0000	0,68
	25	1505 do 2000	0	0	1,376	0	0	4,19000000	0,0000	0,68
	26	2005 do 2500	0	0	1,769	0	0	8,18000000	0,0000	0,68
	27	2505 do 3000	0	0	2,162	0	0	14,10000000	0,0000	0,68
	28	3005 do 4000	0	0	5,502	0		33,500000000	0,0000	0,68
70000	1000 7007	inu comontouro	ao uu botonio D=	26.2	0/					
Zawa	nosc zaczy	nu cementowe	go w betonie P-	20,3	70					
Calkowita	a alugosc c	ieciw przypadaj	aca na pory 1 _a =	8,289	mm					
	Cal	kowita zawarto	sc powietrza A=	0,69	%					
	Calkow	vita liczba mierz	onych cieciw N=	68	1					
	P	owierzchnia wla	isciwa porow α=	32,81	mm ⁻ '					
		Stosunek zacz	yn/powietrze R=	38,314						
		Wskaznik ro	zmieszczenia L=	0,34	mm					
		Zawartosc mil	kroporow A300=	0.47	%					

Calkowita dlugosc lini pomiarowej, T _{tot} =			= 1207,62 mm							
Kolumna	1	2	3	4	5	6	7	8	9	10
Przedmiot	Klasa	Granice klasy	Liczba cieciw zarejestrowana w klasie	Czestosc wystepowania cieciw	Udzial porow zliczonych	Potencjalna liczba cieciw	Liczba porow w klasie	Objetosc pojedynczego pora	Zawartosc powietrza	Skumulowana zawartosc powietrza
Jednostki		μm		mm ⁻¹	mm ²	mm ⁻³	mm ⁻³	mm ³	%	%
	1	0 do 10	13	0.010764983	0.0001178	91.38356106	22,10113099	0,00000524	0.0012	0.00
	2	15 do 20	23	0.01904574	0.0002749	69,28243007	38,61296143	0.000004190	0.0162	0.02
	3	25 do 30	16	0,01324921	0,000432	30,66946864	-3,0721539	0,000014100	-0,0043	0,01
	4	35 do 40	24	0,019873816	0,000589	33,74162254	-0,66441586	0,000033500	-0,0022	0,01
	5	45 do 50	31	0,025670345	0,0007461	34,4060384	24,32097177	0,000065400	0,1591	0,17
	6	55 do 60	11	0,009108832	0,0009032	10,08506664	-1,18374164	0,000113000	-0,0134	0,16
	7	65 do 80	31	0,025670345	0,002278	11,26880828	3,290102738	0,000268000	0,0882	0,24
	8	85 do 100	28	0,023186118	0,002906	7,978705538	2,589418603	0,000524000	0,1357	0,38
	9	105 do 120	23	0,01904574	0,003534	5,389286934	2,405588928	0,000905000	0,2177	0,60
	10	125 do 140	15	0,012421135	0,004163	2,983698006	0,736780141	0,001440000	0,1061	0,70
	11	145 do 160	13	0,010764983	0,004791	2,246917865	1,482869468	0,002140000	0,3173	1,02
	12	165 do 180	5	0,004140378	0,005419	0,764048398	-0,19443589	0,003050000	-0,0593	0,96
	13	185 do 200	7	0,00579653	0,0060476	0,958484287	0,338295811	0,004190000	0,1417	1,10
	14	205 do 220	5	0,004140378	0,006676	0,620188476	-0,06004892	0,005580000	-0,0335	1,07
	15	225 do 240	6	0,004968454	0,007304	0,680237393	0,053935374	0,007240000	0,0390	1,11
	16	245 do 260	6	0,004968454	0,007933	0,626302019	0,239395979	0,009200000	0,2202	1,33
-	17	265 do 280	4	0,003312303	0,008561	0,386906041	-0,24390575	0,011500000	-0,2805	1,05
	18	285 do 300	7	0,00579653	0,009189	0,630811794	0,598616006	0,014100000	0,8440	1,89
	19	305 do 350	1	0,000828076	0,02572	0,032195787	-0,02366092	0,022400000	-0,0530	1,84
	20	355 do 400	2	0,001656151	0,02965	0,055856705	0,055856705	0,033500000	0,1871	2,03
	21	405 do 450	0	0	0,03358	0	-0,02208202	0,047700000	-0,1053	1,92
	22	455 do 500	1	0,000828076	0,0375	0,022082017	0,015076301	0,065400000	0,0986	2,02
	23	505 do 1000	5	0,004140378	0,591	0,007005716	0,005322122	0,524000000	0,2789	2,30
	24	1005 do 1500	2	0,001656151	0,9837	0,001683594	0,001683594	1,770000000	0,2980	2,60
	25	1505 do 2000	0	0	1,376	0	-0,0004681	4,190000000	-0,1961	2,40
	26	2005 do 2500	1	0,000828076	1,769	0,000468104	0,000468104	8,18000000	0,3829	2,78
	27	2505 do 3000	0	0	2,162	0	0	14,10000000	0,0000	2,78
	28	3005 do 4000	0	0	5,502	0		33,500000000	0,0000	2,78
Zawar	tosc zaczy	nu cementowe	go w betonie P=	26,3	%					
Calkowita	dlugosc c	ieciw przypada	jaca na pory T _a =	34,022	mm					
	Cal	kowita zawarto	sc powietrza A=	2,82	%					
	Calkow	vita liczba mierz	onych cieciw N=	280						
	P	owierzchnia wla	sciwa porow α=	32,92	mm ⁻¹					
		Stosunek zacz	yn/powietrze R=	9,335						
		Wskaznik ro	zmieszczenia L=	0,19	mm					
		Zawartosc mil	kroporow A300=	1,89	%					

Tablica Z6.5. Charakterystyka porów powietrznych w próbce betonu 10G (odwiert #10, część górna)

Tablica Z6.6. Charakterystyka porów powietrznych w próbce betonu 10D (odwiert #10, część dolna)

	Calkowita dlugosc lini pomiarowej, T _{tot} =		1207,62	mm						
Kolumna	1	2	3	4	5	6	7	8	9	10
Przedmiot	Klasa	Granice klasy	Liczba cieciw zarejestrowana w klasie	Czestosc wystepowania cieciw	Udzial porow zliczonych	Potencjalna liczba cieciw	Liczba porow w klasie	Objetosc pojedynczego pora	Zawartosc powietrza	Skumulowana zawartosc powietrza
Jednostki		um		mm ⁻¹	mm ²	mm ⁻³	mm ⁻³	mm ³	%	%
	1	0 do 10	13	0.010764983	0.0001178	91,38356106	31,1379697	0.00000524	0.0016	0.00
	2	15 do 20	20	0.016561513	0.0002749	60.24559136	29.57612272	0.000004190	0.0124	0.01
	3	25 do 30	16	0,01324921	0,000432	30,66946864	-3,0721539	0,000014100	-0,0043	0,01
	4	35 do 40	24	0,019873816	0,000589	33,74162254	11,54417841	0,000033500	0,0387	0,05
	5	45 do 50	20	0,016561513	0,0007461	22,19744413	5,694607816	0,000065400	0,0372	0,09
	6	55 do 60	18	0,014905362	0,0009032	16,50283631	4,143498206	0,000113000	0,0468	0,13
	7	65 do 80	34	0,028154572	0,002278	12,35933811	3,810725033	0,000268000	0,1021	0,23
	8	85 do 100	30	0,02484227	0,002906	8,548613076	3,159326142	0,000524000	0,1655	0,40
	9	105 do 120	23	0,01904574	0,003534	5,389286934	3,002328529	0,000905000	0,2717	0,67
	10	125 do 140	12	0,009936908	0,004163	2,386958405	0,831399883	0,001440000	0,1197	0,79
	11	145 do 160	9	0,007452681	0,004791	1,555558522	-0,12534795	0,002140000	-0,0268	0,76
	12	165 do 180	11	0,009108832	0,005419	1,680906475	0,174716881	0,003050000	0,0533	0,82
	13	185 do 200	11	0,009108832	0,0060476	1,506189594	0,886001117	0,004190000	0,3712	1,19
	14	205 do 220	5	0,004140378	0,006676	0,620188476	-0,17342182	0,005580000	-0,0968	1,09
	15	225 do 240	7	0,00579653	0,007304	0,793610292	0,584842952	0,007240000	0,4234	1,52
	16	245 do 260	2	0,001656151	0,007933	0,20876734	0,11204083	0,009200000	0,1031	1,62
	17	265 do 280	1	0,000828076	0,008561	0,09672651	0,00661054	0,011500000	0,0076	1,63
	18	285 do 300	1	0,000828076	0,009189	0,090115971	-0,10305875	0,014100000	-0,1453	1,48
	19	305 do 350	6	0,004968454	0,02572	0,193174725	0,109389667	0,022400000	0,2450	1,73
	20	355 do 400	3	0,002484227	0,02965	0,083785058	0,009805696	0,033500000	0,0328	1,76
	21	405 do 450	3	0,002484227	0,03358	0,073979362	0,051897344	0,047700000	0,2476	2,01
	22	455 do 500	1	0,000828076	0,0375	0,022082017	0,015076301	0,065400000	0,0986	2,11
	23	505 do 1000	5	0,004140378	0,591	0,007005716	0,004480325	0,524000000	0,2348	2,34
	24	1005 do 1500	3	0,002484227	0,9837	0,002525391	0,001321792	1,770000000	0,2340	2,57
	25	1505 do 2000	2	0,001656151	1,376	0,001203598	0,001203598	4,19000000	0,5043	3,08
	26	2005 do 2500	0	0	1,769	0	0	8,18000000	0,0000	3,08
	27	2505 do 3000	0	0	2,162	0	-0,0001505	14,10000000	-0,2122	2,87
	28	3005 do 4000	1	0,000828076	5,502	0,000150504		33,50000000	0,0000	2,87
Zawa	rtosc zaczy	nu cementowe	go w betonie P=	26,3	%					
Calkowita	a dlugosc c	ieciw przypadai	jaca na pory T₃=	40,133	mm					
	Ca	kowita zawarto	sc powietrza A=	3.32	%					
	Calkov	vita liczba mierz	onych cieciw N=	281						
	P	owierzchnia wła	sciwa porow a=	28.01	mm ⁻¹					
		Stosunek zacz	vn/nowietrze R=	7 91/						
		Wskaznik ro	zmieszczenia I =	0.20	mm					
		Zawartosc mil	kroporow A300=	1.48	%					