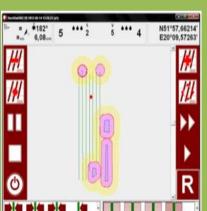
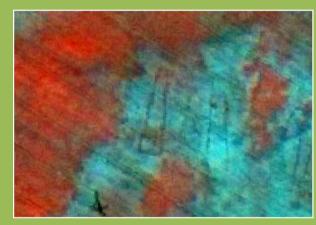


Activities of Wasat Sp. z o.o.

The company provides geo-information services based on the results of scientific research. The product portfolio is built on creative use of advanced technologies, mainly satellite remote sensing, navigation techniques and mobile applications.


 Remote sensing analyses for environmental protection, agriculture and archaeology;


Navigation solutions for indoor environment and

robotics;

Mobile geo-services

Modern agriculture

Agriculture is one of the most dynamic and technology-driven sectors of the European and global economy. It faces a critical challenge of feeding 7 B people today and 9 B people in 2050.

Technological developments that facilitate farmers addressing the demand:

- bioengineering (incl. GMO) and biochemistry,
- robotics, autonomous machinery steering,
- computing and big data management,
- mobile technology,
- sensors (satellite, airborne, ground sensors),
- precision agriculture

(R.Saik, The Agriculture Manifesto)

Precision agriculture

Precision farming can be described as a comprehensive system designed to optimize agricultural production through the application of crop information, advanced technologies and management practices. (K.G. Cassman)

In precision agriculture a field is considered as a spatially diverse structure, in contrast to a whole field approach in a traditional agriculture. This spatial variability needs to be addressed with a management strategy, supported by the technological solutions, that include:

- intensive soil sampling,
- remote sensing,
- geographic information systems (GIS),
- yield monitoring,
- positioning systems (GNSS, RTK),
- variable rate applicators of inputs (fertilizers, crop protection products, water)

(T.A. Brase)

Intensive soil sampling

OKRĘGOWA STACJA CHEMICZNO - ROLNICZA W OLSZTYNIE

10-444 Olsztyn, ul. Kołobrzeska 11 tel./fax (~ 89) 533 20 92 tel. (~ 89) 534 40 95 DZIAŁ LABORATORYJNY

akredytowany przez Polskie Centrum Akredytacji - certyfikat Nr AB 277

Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Rolniczy Zakład Doświadczalny im. Prof. Adama Skoczylasa w Żelaznej, 96-116 Dębowa Góra

Gmina: Skierniewice

Powiat: skierniewicki Województwo: Łódzkie

Wyniki badań do zlecenia nr GR/506

dotyczy zlecenia/umowy GR/506 z dnia 22-04-2014 r.

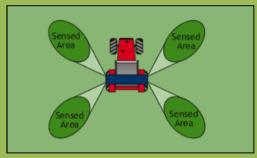
* Zlecenie wykonano w dniach 22-04-2014 - 29-04-2014 r.

Powierzchnia ogólna użytków rolnych: 700,00

Przebadana powierzchnia użytków rolnych: 15,86
w tym gr. orne: 15,86
uż. zielone: 0,00

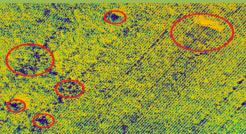
Wyniki badań i ocena zawartości makroelementów

Nr próbki	Rodzaj użytku	Kategoria agronomiczna gleby	Kwasowość		Potrzeby	Zawartość składników przyswajalnych [w mg na 100g gleby] i ocena							
			pH Odczyn		wapnowania	Fosforu		Potasu		Magnezu			
			w KCI	- Cookyn		P2O5	ocena	K,O	ocena	Mg	ocena		
1	orne	lekka	6,36	lekko kwaśny	zbędne	27,7	bardzo wysoka	14,8	érednia	3,9	średnia		
2	ome	lekka	6,21	lekko kwaśny	zbędne	23,6	bardzo wysoka	15,2	wysoka	4,0	średnia		
3	ome	lekka	6,72	obojętny	zbędne	23,4	bardzo wysoka	16,1	wysoka	5,1	wysoka		
4	orne	średnia	6,42	lekko kwaśny	ograniczone	21,5	bardzo wysoka	16,0	średnia	7,8	wysoka		
5	orne	średnia	6,36	lekko kwaśny	ograniczone	25,4	bardzo wysoka	17,8	śrędnia	7,4	wysoka		
6	orne	średnia	6,05	lekko kwaśny	wskazane	30,6	bardzo wysoka	19,0	średnia	6.0	średnia		
7	ome	średnia	6,00	lekko kwaśny	wskazane	27,0	bardzo wysoka	22,7	wysoka	5.9	średnia		
8	ome	średnia	6,06	lekko kwaśny	ograniczone	19,9	wysoka	17,4	średnia	6,2	średnia		
9	ome	średnia	6,36	lekko kwaśny	ograniczone	14,5	średnia	13,2	średnia	6,6	średnia		
10	orne	średnia	6,15	lekko kwaśny	ograniczone	14,6	średnia	15,3	średnia	6,8	średnia		
11	ome	średnia	5,89	lekko kwaśny	wskazane	15,0	średnia	14,4	średnia	4.2	niska		
12	orne	lekka	5,96	lekko kwaśny	ograniczone	14,8	średnia	14.2	średnia	4.0	średnia		
13	ome	średnia	6,15	lekko kwaśny	ograniczone	19,1	wysoka	13.9	średnia	5.0	niska		
14	ome	średnia	6,23	lekko kwaśny	ograniczone	22,8	bardzo wysoka	15.4	średnia	5.6	średnia		
15	ome	średnia	6,49	lekko kwaśny	ograniczone	34,0	bardzo wysoka	18.3	średnia	6.0	średnia		
16	orne	średnia	6,37	lekko kwaśny	ograniczone	30,2	bardzo wysoka	16.4	średnia	5.9	średnia		
17	orne	średnia	6,16	lekko kwaśny	ograniczone	19,2	wysoka	14.2	średnia	4.4	niska		
18	orne	średnia	5,91	lekko kwaśny	wskazane		wysoka	10.7	niska		niska		
19	ome	średnia	6,64	obojetny	zbedne		wysoka	12.8	średnia		niska		
20	orne	średnia	6,65	obojetny	zbedne	16,3	wysoka	15.4	średnia	6.9	średnia		
21	ome	lekka	5,98	lekko kwaśny	ograniczone	22.9	bardzo wysoka	15.8	wysoka	5.6	wysoka		
22	ome	średnia	5,99	lekko kwaśny	wskazane		bardzo wysoka		średnia		średnia		
23	ome	średnia	6,30	lekko kwaśny	ograniczone		bardzo wysoka	19.7	średnia		średnia		
24	orne	średnia	6,35	lekko kwaśny	ograniczone		wysoka	16.2	średnia		średnia		
25	orne	lekka	6,12	lekko kwaśny	zbedne		bardzo wysoka	15.9	wysoka		wysoka		
26	orne	lekka	6,01	lekko kwaśny	ograniczone		bardzo wysoka		wysoka		wysoka		
27	ome	lekka	6,14	lekko kwaśny	zbedne		bardzo wysoka		średnia		wysoka		
28	ome	lekka	6.60	oboletny	zbedne		bardzo wysoka		wysoka		wysoka		


Bartosz Buszke

3 layers of remote sensing

• Ground sensors:



• Airborne sensors (UAVs / drones):

• Satellite imagery:

Use of satellite sensors in precision farming

Sensor	Land use / land cover	Riparian and buffer zones	Air Water Vapor	Land Surface Temperature	Precipitation	Crop protection	Disease Diagnosis	Vegetation stress	Wetness condition of vegetation	Soil moisture	Draught	Hail protection	Frost protection	Yield estimation	Weed control
AVHRR	Υ	-	Υ	Υ	Υ	Υ	-	Υ	Υ	-	Υ	Υ	Υ	Υ	-
MODIS	Υ	-	Υ	Υ	Υ	Υ	-	Υ	Υ	-	Υ	Υ	Υ	Υ	-
Sentinel-1	Υ	-	-	-	-	-	-	Υ	Υ	Υ	Υ	-	-	Υ	-
Landsat TM	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	-	-	-	-	Υ	-
SPOT	Υ	Υ	-	-	-	-	Υ	Υ	Υ	-	-	-	-	Υ	Υ
VHR optical	Υ	Υ	-	-	-	Υ	Υ	Υ	Υ	-	-	-	-	Υ	Υ

Variable rate application of inputs

Bartosz Buszke

WASAT's product: management zones maps

Precision agriculture relies on the concept that variability within the main factors responsible for crop yield can be identified, quantified, and spatially delineated.

Polish farmers' requirements:

A tool/product that allows initiating precision agriculture practices

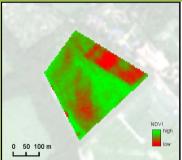
Alternative for other, expensive solutions like tractor mounted sensors etc.

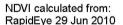
A map that helps to improve soil sampling strategy

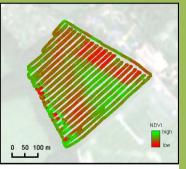
The solution:

Management Zones maps, that facilitate identifing long term production zones on the basis of historical assessment of crop productivity indices:

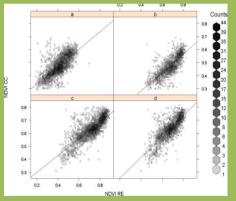
- archived satellite imagery as a data source on crop historical conditions
- algorithm of data fusion that enables the use of various sensors and imagery of different resolution
- web-based and mobile tools for distribution of the product




Product development



Example of datasets: Landsat 5 TM - 03.07.2006 Terra ASTER - 06.05.2008 Rapid Eye - 29.06.2010 Landsat 8 OLI - 20.06.2013 **Vegetation Indices:**


NDVI NDII
OSAVI MSI
WDRVI GNDVI
ARVI mPSRI
EVI TCARI

CropCircle 28 Jun 2010

R Console								
> getwd()								
[1] "C:/Users/Janek/Documents"								
> setwd("d:/r")								
> samples = read.csv("zelazna test.csv")								
> head(samples)								
ph Fosfor Potas Magnez CLASS NAME CLASS ID								
1 6.15 19.1 13.9 5 average 3								
2 6.15 19.1 13.9 5 average 3								
3 6.15 19.1 13.9 5 average 3								
4 6.15 19.1 13.9 5 average 3								
5 6.15 19.1 13.9 5 average 3								
6 6.15 19.1 13.9 5 average 3								
> kruskal.test(ph ~ CLASS_NAME, data = samples)								
Kruskal-Wallis rank sum test								
data: ph by CLASS NAME								
Kruskal-Wallis chi-squared = 10.3597, df = 3, p-value = 0.01574								
> kruskal.test(Fosfor ~ CLASS_NAME, data = samples)								
Kruskal-Wallis rank sum test								
data: Fosfor by CLASS NAME								
Kruskal-Wallis chi-squared = 99.1882, df = 3, p-value < 2.2e-16								
> kruskal.test(Potas ~ CLASS_NAME, data = samples)								
Kruskal-Wallis rank sum test								
data: Potas by CLASS NAME								
Kruskal-Wallis chi-squared = 100.1311, df = 3, p-value < 2.2e-16								
> kruskal.test(Magnez ~ CLASS_NAME, data = samples)								
Kruskal-Wallis rank sum test								

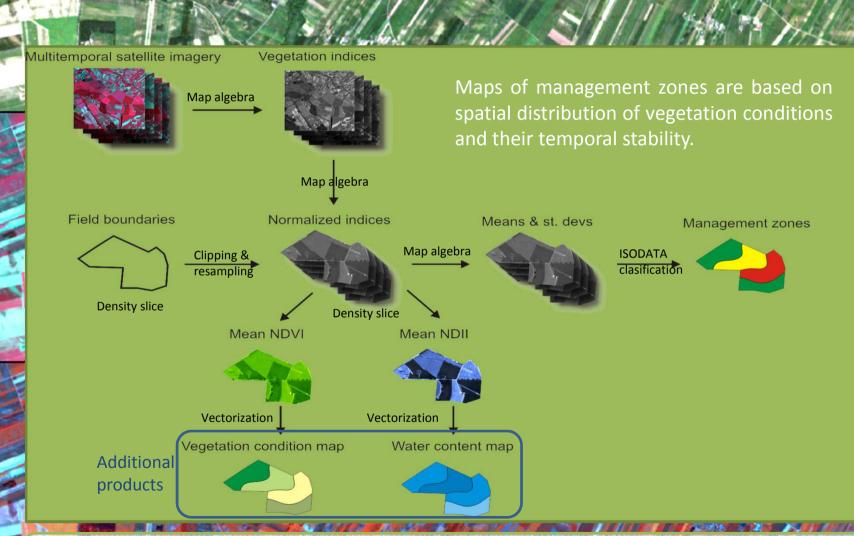
pH Kruskal-Wallis chi-squared = 10.3597, df = 3, p-value = 0.01574

Magnesium Kruskal-Wallis chi-squared = 6.9908, df = 3, p-value = 0.07219

Potassium Kruskal-Wallis chi-squared = 100.1311, df = 3, p-value < 2.2e-16

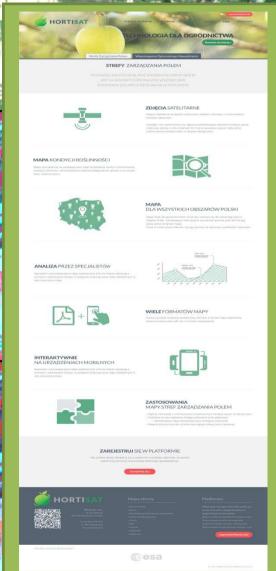
Phosphorus Kruskal-Wallis chi-squared = 99.1882, df = 3, p-value < 2.2e-16

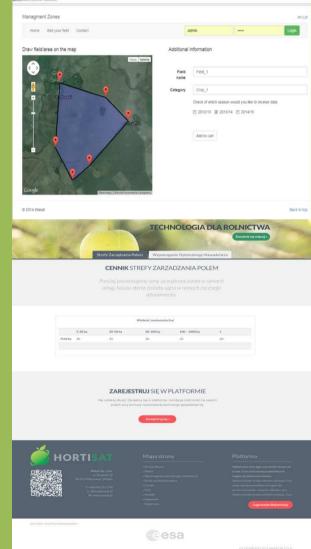
Product development


Numerous approaches to the fusion of datasets and different orders of operations were tested:

- Indices calculation
- Image resampling
- Different sensor images multiplication, addition and averaging
- Different year images multiplication, addition and averaging
- Different index images multiplication, addition and averaging
- Median filtering
- Majority filtering
- Density slicing
- Unsupervised classification
- Image segmentation

Management zones delineation methodology was developed in cooperation with the University of Warsaw and with Warsaw University of Life Sciences. The work was performed in the frame of "HortiSat" PECS project funded by ESA.


Product development



Bartosz Buszke

On-line ordering service

Examples of MZ Maps delivered to farmers

Bartosz Buszke

Application of the maps

Maps of management zones can be provided either in the form of a paper map, an electronic file and in the form of an interactive map. They can be displayed in a web browser or on a mobile device. By displaying a map on a smartphone or a tablet, a farmer can locate his position in the field and verify in which zone he currently operates.

HortiSatGIS

HortiSat GIS Website

Irrigation Service

Irrigation Graph

Management Zones

Hortisat User Login

Use cases:

- Overview of the spatial variability of a field, especially for medium and large-scale farmers or those who plan to purchase new land parcels;
- Basis for preparing soil sampling strategy: more accurate map of soil conditions with smaller quantity of analysed samples;
- Guidelines for planning variable rate application of inputs (esp. nitrogen fertilizers).

Expectations regarding the Copernicus Programme

- WASAT develops advisory service based on satellite imagery for farmers who irrigate their crops (mostly horticultural growers): evapotranspiration measurements mainly rely on AVHRR data, but much more information on water/moisture conditions are necessary in order to effectively address users' expectations: a soil moisture information based on Sentinel-1 imagery can be a partial solution.
- We look forward to deriving specific products from Sentinel-2 imagery that can be useful for crop monitoring, and, consequently, for variable rate application of inputs.
- Sentinel Collaborative Ground Segment site in Poland would certainly facilitate an access to Sentinel data.

Bartosz Buszke

