Appendix A

Harmonia^{+PL} – procedure of negative impact risk assessment for invasive alien species and potentially invasive alien species in Poland

Questionnaire

A0 | Context

Questions from this module identify the assessor and the biological, geographical & social context of the assessment.

a01. Name(s) of the assessor(s):

first name and family name

Izabela Sachajdakiewicz first name and family name

Katarzyna Bzdęga

first name and family name

Alina Urbisz

acomm01.	Comments:		
	degree	affiliation	assessment date
	M.Sc.	Zespół ekspertów Barszcz.edu.pl	15.12.2017
	degree Dr	affiliation	assessment date
		Faculty of Biology and Environmental Protection University of Silesia in Katowice	18.12.2017
	degree Dr hab.	affiliation	assessment date
		Faculty of Biology and Environmental Protection University of Silesia in Katowice	18. 12. 2017

a02. Name(s) of the Species under assessment:

Polish name

Barszcz perski

Latin name

Heracleum persicum Desf. ex Fisch., C.A.Mey. & Avé-Lall English name

Persian hogweed

acomm02.	Comments: This name is unresolved. The record derives from WCSP (Web. 1 - I) which does not establish this name either as an accepted name or as a synonym with original publication details: Index Seminum (LE) 7: 50 1841. Full publication details for this name can be found in Web. 2. There are many more synonyms of Latin names, e.g.: <i>Heracleum amplissimum</i> Wenderoth, <i>Heracleum carmeli</i> Hort. ex Wender (Web. 3 - I). The multitude of the species names is partly connected its incorrect identification based on morphological characteristics (Web. 4 - I). Preferred common names are given below (Web. 4 - I).				
	Polish name (synonym I)	Polish name (synonym II)			
	Latin name (synonym I)				
	Haraclaum alabrascans Poiss & Hobon	Haraclaum laciniatum Dosf			
	nerucleum glubrescens bolss. & nonen.	neracieum acimatam Desi.			
	English name (synonym I)	English name (synonym II)			
	Golpar				

a03. Area under assessment:

Poland

acomm03.	Comments:

a04. Status of the Species in Poland. The Species is:

native to Poland
alien, absent from Poland
alien, present in Poland only in cultivation or captivity
alien, present in Poland in the environment, not established
alien, present in Poland in the environment, established

aconf01.

Answer provided with a

low medium h X

high level of confidence

х

acomm04.	Comments: in "Comments" (questions acomm04-41) experts should provide explanations for their answers and list sources of information . In particular, Comments should explain the decision in cases when data is lacking, incomplete or uncertain, or if the available information is contradictory. Source of the information should also be provided here, with author and year of publication; data sources should be divided into P – published results of scientific research; B - databases; N – unpublished data; I - other; A – author's own data. Detailed information (including full bibliographic record) should be provided at the end of the questionnaire "Data sources". Guidance on data sources citation is available at the end of the <i>Harmonia</i> ^{+PL} – procedure of negative impact risk assessment for invasive alien species and potentially invasive alien species in Poland.
	Information on the presence of <i>H. persicum</i> in Poland is unclear and divergent. According to some sources, the plant does not occur in the country (Sachajdakiewicz and Medrzycki 2014, OEPP / EPPO 2009a, Śliwiński 2009 - P), others do not exclude such possibility - oral reports and unpublished data on sporadic occurrence of plants in north-eastern Poland, requiring further verification (Tokarska-Guzik et al. 2015 - P). The species is related and morphologically similar to the other two invasive alien species of the genus Heracleum: <i>H. sosnowskyi</i> and <i>H. mantegazzianum</i> (Jahodová et al. 2007 - P), therefore it may not be identified in the country. The morphological characteristics of <i>H. persicum</i> vary depending on the environmental conditions in which it grows, which makes identification difficult (OEPP/EPPO 2009a - P). At the same time, according to the <i>Report of Pest Risk Analysis</i> , the analysis of climate models of the potential distribution of Caucasian hogweeds the software CLIMEX indicates that the species can also be found in Poland (Web. 5 - I). Tall alien <i>Heracleum</i> species other than <i>H. sosnowskyi</i> and <i>H. mantegazzianum</i> , including <i>H. persicum</i> , are present in Polish botanical gardens (e.g. in Botanical Garden of the Polish Academy of Science in Warsaw - N).

use . The impact of the species of major domains. The	opecies	may
environmental domain	х	
cultivated plants domain	х	
domesticated animals domain	х	
human domain	х	
other domains	х	

a05. The impact of the *Species* on major domains. The *Species* may have an impact on:

acomm05. Comments:

Heracleum persicum generally occupies the same habitats as *H. mantegazzium*. These are disturbed habitats such as roadsides, railroads, abandoned agricultural land, ruderal areas as well as semi-natural habitats: meadows, grasslands, coastal beaches and banks of streams and rivers. It can be found in most of open areas around cities, including in Norway and Finland, in gardens and parks (OEPP/EPPO 2009a; Klingenstein 2006 - P). The species can also colonize natural habitats and it is expected that its impact might be higher than *H. mantegazzianum*. (Web. 5 - I). Along riverbanks, *H. persicum*, like the other two species (*H. sosnowskyi* and *H. mantegazzianum*), can almost totally replace the natural vegetation and threaten biodiversity, including fauna associated with (native) plants, building a 'giant hogweed landscape' (Nielsen et al. 2005 - P). Nevertheless, Thiele and Otte (2007 - P) suggest that loss of plant species diversity in habitats invaded by *H. mantegazzianum* in Germany is a general symptom of successional changes rather than a particular effect of the invasive alien species.

Heracleum persicum, similarly to the other two species: *H. mantegazzianum* and *H. sosnowskyi*, contains photosensitizing furanocoumarins. In contact with human skin and in combination with ultraviolet radiation, a phytotoxic reaction followed by burns (Web. 5 - I). Moreover, dense infestations can seriously interfere with access to amenity areas, riverbanks, etc., and along roadsides, large stands can reduce visibility and result in road safety hazards (Web. 5 - I).

A1 | Introduction

Questions from this module assess the risk for the *Species* to overcome geographical barriers and - if applicable - subsequent barriers of captivity or cultivation. This leads to Introduction, defined as the entry of The Organism within the limits of The Area and subsequently into the wild.

a06. The probability for the *Species* to expand into Poland's natural environments, **as a result of self-propelled expansion** after its earlier introduction outside of the Polish territory is:

medium					
high		X			
aconf02. Ar	nswer provided with a	low	medium X	high	level of confidence

acomm06. Comments:

Heracleum persicum is very similar to *H. mantegazzianum* in terms of ecological requirements, including humidity, fertile substrate, sun exposure and climate (OEPP/EPPO 2009a - P). The analysis of climate models of the potential distribution of the Caucasian hogweed taxa, including *H. persicum*, with the CLIMEX software, indicated that the countries of Central Europe and Scandinavia are the areas most threatened by the invasion of the species (Web. 5 - I). Countries with a similar climate are: Austria, Belarus, Belgium, Czech Republic, Denmark, Estonia, Finland, France (north-east), Germany, Hungary, Latvia, Lithuania, Norway, Poland, Romania, Russia, United Kingdom (south-east), Slovakia, Sweden, Switzerland and Ukraine (Web. 5 - I). So far, the presence of *H. persicum* has been confirmed in Belgium, Czech Republic, Denmark, Estonia, Finland, Fannark, Estonia, Finland, Hungary, Latvia, Lithuania, Norway and United Kingdom (Nielsen et al. 2005, Jahodova et al. 2007b, Wasowicz i in. 2013, EPPO 2013 - P).
Therefore, the probability of occurrence of the species in the natural environment of Poland is high.

a07. The probability for the *Species* to be introduced into Poland's natural environments by **unintentional human actions** is:

low medium high		x			
aconf03.	Answer provided with a	low	medium X	high	level of confidence
acomm07.	Comments: Due to the similarity of <i>H</i> and <i>H. sosnowskyi</i> in term under the name <i>Heracleu</i> this species (leaves, flowe within this group, especia with the native species documented history of im species probably occurs in swarms (Sachajdakiewicz a The plant reproduces gen even over 10 m. The main especially during floods (2015 - P). Before they dr water and 1.5-2 days in flo moved along with road to people e.g. stuck to shoes distance seed dispersion Guzik et al. 2015 - P). See available via Internet (We natural environments. Spontaneous appearance intervention or as a result	eracleum p ns of many m spp. (Of ers, fruits), ally with <i>H.</i> <i>H. sphona</i> troductions n Poland, b and Mędrz neratively, in factor of (Sachajdaki own, seed owing wate transport e s (Nielsen e is also tran ds of <i>H. pe</i> eb. 5 - 1). It e of the s of its unint	persicum to traits, the EPP / EPPO high indivi mantegaz lylium (Rija s and source ut is not id ycki ed. 202 producing transport f ewicz and s of <i>Heracl</i> er (Gucker a e.g. on whe et al. 2005, hsport with ersicum are may be a pecies in tentional ac	the oth three sp 2009b - dual varie zzianum al et al. ces of se entified. 14 - P). fertile se for a larg Mędrzy eum spp and Core eels of c OEPPO/ free-flo used in possible the nate	er two species: <i>H. mantegazzianum</i> becies are referred to as one group P). The morphological structure of ability, the ability to create hybrids (Elven 2005, Fröberg 2010 - P) and 2015 - P), as well as the poorly eds, justify the assumption that the Perhaps it is an element of hybrids eeds that can spread with the wind ger number of seeds may be water, cki ed. 2014, Tokarska-Guzik et al. a. may float for up to 3 days in still y 2009). Additionally, they might be cars, railways or unintentionally by (EPPO 2009a - P). The form of long- wing substrates and soil (Tokarska- Persian cuisine as a spice. They are a way of introduction into Poland's ural environment, without human therefore, likely.

a08. The probability for the *Species* to be introduced into Poland's natural environments by **intentional human actions** is:

low					
medium		x			
high					
aconf04.	Answer provided with a	low	medium	high X	level of confidence

acomm08. Comments:

Currently, there is relatively high awareness of the threats to human health caused by the invasive Caucasian hogweeds among the Polish society. In Poland, Heracleum sosnowskyi was introduced as a fodder plant, while H. mantegazzianum as an ornamental plant, although there are no detailed data on the introduction for this purpose (Sachajdakiewicz and Mędrzycki ed. 2014 - P). On the other hand, H. persicum has never been traded in Poland. However, the species was massively planted in Scandinavia, where it was grown as decorative garden plant, but not in other countries (Web. 5 - I). Invasive nature and toxic properties of the species make it impossible to use it in horticulture (Tokarska-Guzik et al. 2015 - P).

H. persicum is a threat to biodiversity and human health. In Poland, this species has not been included in the Regulation of the Minister of the Environment of 9 September 2011 on the list of plants and animals of alien species, which in the case of release to the natural environment may threaten native species or natural habitats (Journal of Laws 2011 No. 210 item 1260), therefore it could be legally imported, cultivated and sold without the permission of authorities. However, the species has been placed on the list of alien species that might pose a threat to the nature of Poland and the European Union (Tokarska-Guzik et al. 2015 - P). Irrespective of legal regulations, the level of interest in the species as an ornamental plant, due to the well-known properties of the closely related species, should be rated as low. The risk of intentional introduction of the species is therefore unlikely/medium.

A2 | Establishment

Questions from this module assess the likelihood for the Species to overcome survival and reproduction barriers. This leads to *Establishment*, defined as the growth of a population to sufficient levels such that natural extinction within The Area becomes highly unlikely.

a09. Poland provides climate that is:

			_		
non-optimal					
sub-optimal					
optimal for esta	blishment of the Species	x			
aconf05.	Answer provided with a	low	medium	high X	level of confidence
acomm09.	Comments: Heracleum persicum is r naturalized in Scandinavia climatic conditions (Web. Similarly to the other in continental as well as coo (down to -23 °C) (Nielsen e The similarity between the invasive range of the Per- climate the species are op confirmed by the <i>Report o</i> Therefore, the climatic co- establishment and spread two invasive hogweed requirements are establish	native in r a. The spectron 5 - I). I and warn et al. 2005, e climate of sian hogw timal in Po of <i>Pest Risk</i> onditions of of <i>H. persi</i> species ned and wi	nountainou cies seems en hogwee n temperat OEPP/EPP of Poland a eed is in tl land is opti <i>Analysis</i> m f Poland de <i>cum</i> throug (<i>H. sosno</i> despread (⁷	us areas therefo eds in E e climate O 2009a and the o ne range mal for i ade by E o not co ghout the wskyi, Tokarska	of Turkey, Iran and Iraq, and is re to be able to adapt to different Europe, <i>H. persicum</i> tolerates the e, with hot summer and cold winter - P). climate of both the natural and the e of 45-94%, which means that the its establishment. This assumption is PPO (Web. 5 - I). onstitute a significant barrier to the e country, particularly that the other <i>H. mantegazzianum</i>) with similar i-Guzik et al. 2015 - P).

a10. Poland provides habitat that is:

A3 | Spread

Questions from this module assess the risk of the *Species* to overcome dispersal barriers and (new) environmental barriers within Poland. This leads to spread, in which vacant patches of suitable habitat become increasingly occupied from (an) already-established population(s) within Poland.

Note that spread is considered different from range expansions that stem from new introductions (covered by the *Introduction* module).

a11. The capacity of the *Species* to disperse within Poland by natural means, with no human assistance, is:
very low

very low					
low					
medium		x			
high					
very high					
aconf07.	Answer provided with a	low	medium X	high	level of confidence

acomm11. Comments:

Heracleum persicum, similarly to H. sosnowskyi and H. mantegazzianum, spreads to new areas through zoo-, anemo- or hydrochory and through unintentional human activity (e.g. seeds on wheels of cars or stuck to shoes). Particularly effective for species of this type is the transport of seeds with water, surface runoff - for short distances and with the flow of rivers and streams or with flood waters (Tokarska-Guzik et al. 2015 - P). Seeds can be dispersed by weak wind for a distance of 4 m from the mother plant, while by flood or along roads or railway lines within a radius of 2 km from the patch (OEPP/EPPO 2009b - P, compare point a07).

Data on the population expansion (Type B)

Assuming that the species is present in Poland, the dispersal capacity , depending on the dispersion vector can be assessed as: wind B - small, water B - large.

a12. The frequency of the dispersal of the *Species* within Poland by **human actions** is:

low						
mediu	ım					
high			х			
aconfC	08.	Answer provided with a	low	medium	high X	level of confidence
acomn	n12.	Comments: Each form of soil trans surroundings (e.g. associa ditches or gardening wor therein to new areas. Th contain 12,000 viable see capable of sprouting in s contaminants of, for exa spread (OEPP/EPPO 2009) Due to the high similarit ecological requirements.	sport from ated with earks, etc.) m are seeds for ds / m ² , wi spring (Niel apple cerea a). Compare y of <i>H. per</i> it should	the plac arthworks a ay pose a orm a dura th an avera sen et al. al products e also poin sicum to P be borne	es of ir as a resu danger able soil age of 2, 2005 - F s, which t a07 and t a07 and t mante e in mir	nvasive alien hogweeds and their It of clearing or deepening drainage of transferring the seeds contained seed bank. In the autumn, it may 000 seeds / m ² surviving winter and P). Seeds of hogweeds may also be may favour their further potential d a08. <i>gazzianum</i> in terms of biology and that in the event of potential

otential appearance and/or spreading of the Persian hogweed in Poland, it might quickly form large patches in different habitat types for example along roads or watercourses (Tokarska-Guzik and others 2015 - P).

Assuming that the species is present in Poland, the spread as a result of intentional and unintentional human activities should be estimated as high.

A4a | Impact on environmental domain

Questions from this module qualify the consequences of the Species on wild animals and plants, habitats and ecosystems.

Impacts are linked to the conservation concern of targets. Native species that are of conservation concern refer to keystone species, protected and/or threatened. See, for example, Red Lists, protected species lists, or Annex II of the 92/43/EWG Directive. Ecosystems that are of conservation concern refer to natural systems that are the habitat of many threatened species. These include natural forests, dry grasslands, natural rock outcrops, sand dunes, heathlands, peat bogs, marshes, rivers & ponds that have natural banks, and estuaries (Annex I of the 92/43/EWG Directive).

Native species population declines are considered on the local scale: limited decline is considered as a (mere) drop in numbers; severe decline is considered as a (near) extinction. Similarly, limited ecosystem change is considered as transient and easily reversible; severe change is considered as persistent and hardly reversible.

a13. The effect of the Species on native species, through predation, parasitism or herbivory is:

a14. The effect of the Species on native species, through competition is:

low					
medium					
high		x]		
aconf10.	Answer provided with a	low	medium	high X	level of confidence

acomm14. Comments:

Heracleum persicum and the other two invasive alien hogweed species in Europe, have a negative impact on the environment and native biodiversity (OEPP/EPPO 2009a - P). They contribute to the reduction of native species richness, forming extensive, dense and large aggregations where one species almost completely fills the entire area, thanks to the mass production of seeds and formation of a durable soil seed bank. It has been proven that the presence of H. mantegazzianum, closely related to H. persicum, in plant communities, reduces species diversity by 50%-60% (Hejda et al. 2009, Pytlarczyk et al. 2013 - P) while the presence of H. sosnowskyi – even by 62%-69% (Sobisz 2007 - P). However, with time, new ecological balance can be established (Dostál et al. 2013 - P). These plants also use the mechanism of competition, and as a result not only the majority of hogweeds seedlings die due to shading by older plants, but also seedlings of other species coexisting with hogweeds are eliminated (Tappeiner and Cernusca 1996, Nielsen et al. 2005, OEPP/EPPO 2009a - P). Due to the high content of allelopathic substances in the leaves, H. persicum may inhibit the germination of seeds of other species and their growth (Myras 1978; Myras and Junttila 1981; Jandová et al. 2014a; Wille et al. 2013 - P). Invasive alien hogweeds may also alter the physical and chemical properties of the soil (Jandová et al. 2014b - P). Their occurrence near watercourses and reservoirs is the cause of, among others, coastal erosion. Through their overgrowing, hogweeds displace and eliminate native plant species that have important functions in their stabilization, they can also cause a negative impact on the animals present there. The dying leaves of hogweeds change the chemical properties of the soil in the rivers, making them unsuitable for example for salmonids during spawning (Thiele et al. 2007 - P). Other adverse effects include reducing the area of meadows and pastures and penetrating into protected areas. Impact of *H. persicum* may be higher than that of *H. mantegazzianum*, particularly that H. persicum is polycarpic and blooms several times, while H. sosnowskyi and H. mantegazzianum are monocarpic, making H. persicum's reproductive strategy more competitive; it means that the leaves of H. persicum wilt in the autumn, but the plant overwinters with buds below the soil surface (Web. 5 - I). Also compare point a05.

a15. The effect of the *Species* on native species, through **interbreeding** is:

			-		
no / very low					
low					
medium		x			
high					
very high					
aconf11.	Answer provided with a	low	medium X	high	level of confidence
acomm15.	Comments: Heracleum persicum hybri vigorous hybrids (Rijal et where hybridization with native species are occupie sphondylium due to hybridization is much free H. mantegazzianum (Rijal species.	ridizes with al. 2015 - P <i>H. persicu</i> ed by vigorc pridization, quent betwo et al. 2015	the nativ P). <i>Heraclei</i> Im is composed bus hybrids especially een <i>H. per</i> - P, Web. 4	re <i>H. sph</i> um sphor mon. Mc 5. Thus, th 7 in nort 7. sicum an 4 - I). In F	ondylium and produces fertile and ndylium is rare in northern Norway, ost of the suitable habitats for the nere is a risk of local extinction of <i>H</i> . thern Norway. This indicates that of <i>H. sphondylium</i> in the absence of Poland, <i>H. sphondylium</i> is a common

a16. The effect of the Species on native species by hosting pathogens or parasites that are harmful to them is:

very low					
low		х			
medium					
high					
very high					
aconf12.	Answer provided with a	low	medium X	high	level of confidence
acomm16.	Comments: A nematode <i>Heterodera pe</i> <i>H. persicum</i> in its native ra control <i>H. persicum</i> (Web.	ersica (Tyliı nge (Maaf 4 - I). Ther	nchida: <i>Het</i> i et al. 200 e is no data	t <i>eroderic</i> 16 - P). H a on pat	dae), has been reported to parasitize owever, it has not been used yet to hogens and parasites for the species

a17. The effect of the *Species* on ecosystem integrity, by **affecting its abiotic properties** is:

low		
medium	Х	
high		

in the invasive range.

aconf13.	Answer provided with a	low	medium	high	level of confidence
			Х		

Comments:

acomm17.

Heracleum persicum may alter soil composition by repeated decomposition of its own biomass, thereby making soil hostile for other resident vegetation. In the long run, it may monopolize resources and can form monocultures, leading to soil erosion (Fremstad and Elven, 2006). Compare also a14.

a18. The effect of the Species on ecosystem integrity, by affecting its biotic properties is:

low					
medium		х			
high					
aconf14.	Answer provided with a	low	medium	high X	level of confidence
acomm18.	Comments: Heracleum persicum quic allelopathic chemicals it p example, it inhibits the ge and Poa pratensis (Myrås other species. This leads residential species may be I, compare points a05, at Compare also point a15. Per analogiam do H. sosn al. 2014 - P, the number of 62-69% (Sobisz 2007 - P), (Dostal et al. 2013 - P). Those mechanisms are sin characteristic for meadow However, the impact of in pervasive, and therefore Toxic compounds of H. so feed on the plants, excep plants, Hansen et al. 2006	kly develo produces d rmination 5 1978 - P) to the re clocally ext 14). The sp owskyi and of species i but in a lo milar to m vs and gra vasive alie it changes osnowskyi ot for spec of p). Size on biocoen	ps dense a o not allow and growth). Thus, the duced den inct from to becies three d <i>H. mante</i> in phytoco ng time (50 echanisms sslands (e. more profi discourage cies which and endur	stands a v other s h of Alch e domin sity of r the areas atens bi egazzianu enoses v D yrs) a r found in g. Urtico im specie foundly t vertebr are spec ance of p that exer	nd shades out native species. The species to germinate and grow. For emilla subcrenata, Phleum pratense ance of <i>H. persicum</i> could displace hative vegetation. In the long run, where <i>H. persicum</i> grows (Web. 4 - odiversity also by creating hybrids. <i>um</i> , according to Sachajdakiewicz et with <i>H. sosnowskyi</i> may decrease by new ecological balance may develop in highly competitive native species, <i>a dioica</i> , Thiele and Otte 2006 - P). es seems to be more persistent and the structure of plant communities. ate, and invertebrate herbivores to cialised to feed on <i>Apiaceae</i> family patches of <i>H. sosnowskyi</i> have more ted by native expansive species.

A4b | Impact on cultivated plants domain

Questions from this module qualify the consequences of the *Species* on cultivated plants (e.g. crops, pastures, horticultural stock).

For the questions from this module, consequence is considered 'low' when presence of the *Species* in (or on) a population of target plants is sporadic and/or causes little damage. Harm is considered 'medium' when The Organism's development causes local yield (or plant) losses below 20%, and 'high' when losses range > 20%.

a19. The effect of the Species on cultivated plants targets through herbivory or parasitism is:

inapplicable	
very low	х
low	
medium	
high	

a20. The effect of the Species on cultivated plants targets through competition is:

There are no records of direct impact of the species on crops. Invasive alien *Heracleum* species are not normally weeds of crops but there are reports of their penetration into crop fields, for example in potatoes in Sweden; they have also been seen invading pastures (OEPP/EPPO 2009a - P). Invasive alien *Heracleum* species overgrow meadows and pastures, they also disturb agricultural practices (Sachajdakiewicz and Mędrzycki eds. 2014 - P). Considering the species competition mechanism, production of a large number of seeds and policarpy – it is possible, that in case of massive spread, *H. persicum* will be a potential competitor for crop

plants. Using herbicides limits the negative influence on crop plants; however, the long-term effects of pollution by furocumarines are unknown and hardly predictable (Sachajdakiewicz, Mędrzycki red. 2014 - P).

a21. The effect of the *Species* on cultivated plants targets through **interbreeding** with related species, including the plants themselves is:

	>	۲		
			1	1
Answer provided with a	low	medium	high	level of confidence
	Answer provided with a	Answer provided with a low	Answer provided with a low medium	Answer provided with a low medium high

acomm21. Comments:

Currently, there are no crops in Poland related to the genus *Heracleum*, thus the species has no effect on the cultivation of species important from an economic point of view.

a22. The effect of the Species on cultivated plants targets by affecting the cultivation system's integrity is:

very low						
low						
medium		х				
high						
very high						
aconf18.	Answer provided with a	low X	medium	high	level of confidence	
acomm22.	Comments: Invasive alien Heraclelum	n species (overgrow	meadow	s and pastures, they also dis	turb

a23. The effect of the *Species* on cultivated plants targets by hosting **pathogens or parasites** that are harmful to them is:

agricultural practices (Sachajdakiewicz and Mędrzycki eds. 2014 - P).

	very low					
	low		x			
	medium					
	high					
	very high]		
	aconf19.	Answer provided with a	low	medium X	high	level of confidence
ì	acomm23	Comments:				
	acommzs.	By extrapolation of the da <i>H. persicum</i> may have som pathogens and parasite temperature) it cannot be thus increasing their local	ata on the me influenc s. In favo e excluded prevalence	other invas e on cultiv orable cor that the sp (author's	sive alier vated pla nditions vecies ma own data	n hogweeds, it can be assumed that nts as a host or a vector of harmful (optimal shading, humidity and ay be attacked by fungal pathogens, a - A).

A4c | Impact on domesticated animals domain

Questions from this module qualify the consequences of The Organism on domesticated animals (e.g. production animals, companion animals). It deals with both the well-being of individual animals and the productivity of animal populations.

a24. The effect of the Species on individual animal health or animal production, through predation or parasitism is:

inapplicable	х
very low	
low	

medium]		
high					
very high					
aconf20.	Answer provided with a	low	medium	high	level of confidence
acomm24.	Comments: The species is a plant.				

a25. The effect of the *Species* on individual animal health or animal production, by having properties that are hazardous upon **contact**, is:

			-		
very low					
low					
medium					
high		х			
very high]		
aconf21.	Answer provided with a	low	medium	high X	level of confidence
acomm25.	Comments: Heracelum persicum, like t especially with a light coa animals were only burned (Sachajdakiewicz and Mę scientists claim that cows of The sap of <i>H. persicum</i> co animals (<i>per analogiam</i> to 2014 - P, Web. 6 - I). The symptoms (Guzik 1994, Ni be carcinogenic (Archier et The skin of wild animals i	the other C t (Nielsen in light pa drzycki ed whose udd ontains pso o <i>H. sosnow</i> ese substa elsen et al t al. 2012 - is probably	aucasian h et al. 2005 arts of the s. 2014 – ers have be blarens, da wskyi – Gu nces may . 2005, Rzy P).	ogweeds 5 - P). Th body. Th P; Tyms een burn angerous zik 2005 cause pl ymski et istant fo	s, can be dangerous to farm animals, here have been reports that piebald be wounds are very difficult to treat szan 2014 - P). That is why some it, should be killed (Web. 6 - I). for health and life of humans and , Nielsen et al. 2005, Rzymski et al. hotodermatosis and other systemic al. 2014, Klima 2014). They can also r toxic impact of the invasive alien

The skin of wild animals is probably more resistant for toxic impact of the invasive alien *Heracleum* species. There are no specific data about relations between these plants and wild animals but some observations of boars hiding or birds nesting in invasive alien *Heracleum* species stands were published (Łyszczarz 2012 - P). However, specific information on interactions between *H. persicum* and wild animals is not available.

a26. The effect of the *Species* on individual animal health or animal production, by hosting **pathogens or parasites** that are harmful to them, is:

inapplicable	Х
very low	
low	
medium	
high	
very high	

aconf22.	Answer provided with a	low	medium	high	level of confidence
acomm26.	Comments: The species is a plant. Plan animals.	ts are not	hosts or ve	ectors for	pathogens or parasites threatening

A4d | Impact on human domain

Questions from this module qualify the consequences of The Organism on humans. It deals with human health, being defined as a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity (definition adopted from the World Health Organization).

a27. The effect of the *Species* on human health through **parasitism** is:

inapplicable		х			
very low					
low					
medium					
high					
very high					
aconf23.	Answer provided with a	low	medium	high	level of confidence
acomm27.	Comments: The species is not a parasit	te.			

a28. The effect of the Species on human health, by having properties that are hazardous upon contact, is:

a29. The effect of the Species on human health, by hosting pathogens or parasites that are harmful to humans, is:

inapplicable		х			
very low]		
low					
medium					
high					
very high					
aconf25.	Answer provided with a	low	medium	high	level of confidence
acomm29.	Comments: The species is a plant. Plan humans.	nts are not	hosts or ve	ectors for	r pathogens or parasites threatening

A4e | Impact on other domains

Questions from this module qualify the consequences of the Species on targets not considered in modules A4a-d.

a30. The effect of the Species on causing damage to infrastructure is:

very low					
low					
medium					
high		х			
very high					
aconf26.	Answer provided with a	low	medium X	high	level of confidence
acomm30.	Comments: Per analogiam to H. sost influence of H. persicum consequence. Indirect damages caused to tourism, recreation, comm decreasing visibility along values (Rozwadowska 2000 effects in Poland, but it is of required (Sachajdakiewicz	nowskyi a on other oy Species nercial deve roads, an 03, Sachajc certain tha and Mędrz	nd <i>H. ma</i> r domains include de elopment, d negative dakiewicz 2 t their volu cycki eds. 2	ntegazzi can be creasing making 008 - P ume may 014 - P).	anum, the probability of negative e assessed as high, with medium attractiveness of invaded areas for agricultural practices more difficult, ce on the perception of landscape). There are no statistics on those y grow. More research in this field is Compare also point a05.

A5a | Impact on ecosystem services

Questions from this module qualify the consequences of The Organism on ecosystem services. Ecosystem services are classified according to the Common International Classification of Ecosystem Services, which also includes many examples (CICES Version 4.3). Note that the answers to these questions are not used in the calculation of the overall risk score (which deals with ecosystems in a different way), but can be considered when decisions are made about management of the Species.

a31. The effect of the Species on provisioning services is:

No research is known on this topic. Taking into account the possible damages caused by the species, the species may impede access to infrastructure (e.g. it may overgrow storage facilities/ areas/ premises), may make agricultural practices more complicated, or may decrease areas of meadows and pastures (Rozwadowska 2003; Sachajdakiewicz 2008; Sachajdakiewicz and Mędrzycki eds. 2014 - P). These effects may in turn contribute to lower food production.

a32. The effect of the Species on regulation and maintenance services is:

a33. The effect of the Species on cultural services is:

significantly neg	ative					
moderately neg	ative		х			
neutral						
moderately posi	tive					
significantly pos	itive					
aconf29.	Answer provided with a	lo	w	medium	high X	level of confidence

acomm33.

Comments:

Because of its toxic properties, the species poses serious threat in areas used for tourism and recreation, as it may cause burns (author's own data - A).

A5b | Effect of climate change on the risk assessment of the negative impact of the Species

Below, each of the Harmonia+ modules is revisited under the premise of the future climate. The proposed time horizon is the mid-21st century. We suggest to take into account the reports of the Intergovernmental Panel on Climate Change. Specifically, the expected changes of atmospherical variables listed in its 2013 report on the physical science basis may be used for this purpose. The global temperature is expected to rise by 1 to 2 °C by 2046-2065.

Note that the answers to these questions are not used in the calculation of the overall risk score, but can be but can be considered when decisions are made about management of the *Species*.

a34. INTRODUCTION – Due to climate change, the probability for the *Species* to overcome geographical barriers and - if applicable - subsequent barriers of captivity or cultivation in Poland will:

decrease signific	antly					
decrease moder	ately					
not change			х			
increase modera	ately					
increase significa	antly					
(2.2						
aconf30.	Answer provided with a	10	ow	medium	high	level of confidence
				X		

Comments:

acomm34.

Assuming that in the future the temperature will increase by 1-2 °C, the probability that the species will break the subsequent barriers related to introduction to Poland will not change. The species tolerance range for the preferred climatic parameters is given in Web. 4 - I.

a35. ESTABLISHMENT – Due to climate change, the probability for the *Species* to overcome barriers that prevented its survival and reproduction in Poland will:

decrease signific	cantly				
decrease moder	ately				
not change		х			
increase modera	ately				
increase signific	antly				
aconf31.	Answer provided with a	low	medium X	high	level of confidence
acomm35.	Comments: Assuming that in the futur	e the temr	oerature wi	ll increa	se by 1-2 °C the proba

Assuming that in the future the temperature will increase by 1-2 °C, the probability that the species will break the subsequent barriers related to establishment in Poland will not change. The species tolerance range for the preferred climatic parameters is given in Web. 4 - 1.

a36. SPREAD – Due to climate change, the probability for the *Species* to overcome barriers that prevented its spread in Poland will:

				7		
decrease signific	cantly					
decrease moder	ately					
not change			х			
increase modera	ately					
increase signification	antly]		
aconf32.	Answer provided with a	ļ	ow	medium X	high	level of confidence
acomm36.	Comments:					

Assuming that in the future the temperature will increase by 1-2 °C, the probability that the species will break the subsequent barriers related to spread in Poland will not change. The species tolerance range for the preferred climatic parameters is given in Web. 4 - I.

a37. IMPACT ON ENVIRONMENTAL DOMAIN – Due to climate change, the consequences of the *Species* on wild animals and plants, habitats and ecosystems in Poland will:

decrease signific	cantly					
decrease moder	ately					
not change			х			
increase modera	ately					
increase signific	antly					
(22		<u> </u>				
acont33.	Answer provided with a	10	w	medium X	nıgn	level of confidence
acomm37.	Comments:					

Assuming that in the future the temperature will increase by 1-2 °C, the probability that the species will have an impact on environmental domain in Poland will not change. The species tolerance range for the preferred climatic parameters is given in Web. 4 - I.

a38. IMPACT ON CULTIVATED PLANTS DOMAIN – Due to climate change, the consequences of the *Species* on cultivated plants and plant domain in Poland will:

decrease signific	cantly					
decrease moder	ately					
not change			х			
increase modera	ately					
increase signific	antly					
aconf34.	Answer provided with a	lov	v	medium X	high	level of confidence

acomm38. Comments:

Assuming that in the future the temperature will increase by 1-2 °C, the probability that the species will have an impact on cultivated plants in Poland will not change. The species tolerance range for the preferred climatic parameters is given in Web. 4 - I.

a39. IMPACT ON DOMESTICATED ANIMALS DOMAIN – Due to climate change, the consequences of the *Species* on domesticated animals and animal production in Poland will:

decrease significantly						
decrease moderately						
not change			Х			
increase moderately						
increase significantly						
aconf35.	Answer provided with a	þ	ow	medium X	high	level of confidence
acomm39.	Comments:					

Assuming that in the future the temperature will increase by 1-2 °C, the probability that the species will have an impact on cultivated plants in Poland will not change. The species tolerance range for the preferred climatic parameters is given in Web. 4 - I.

a40. IMPACT ON HUMAN DOMAIN – Due to climate change, the consequences of the *Species* on human in Poland will:

decrease significantly						
decrease moderately						
not change			х			
increase moderately						
increase significantly						
aconf36.	Answer provided with a	I	ow	medium X	high	level of confidence
acomm40.	Comments:					

Assuming that in the future the temperature will increase by 1-2 °C, the probability that the species will have an impact on human domain in Poland will not change. The species tolerance range for the preferred climatic parameters is given in Web. 4 - I.

a41. IMPACT ON OTHER DOMAINS – Due to climate change, the consequences of the *Species* on other domains in Poland will:

decrease significantly	
decrease moderately	
not change	х
increase moderately	
increase significantly	

aconf37.	Answer provided with a	low	medium X	high	level of confidence
acomm41.	Comments:				

Assuming that in the future the temperature will increase by 1-2 °C, the probability that the species will have an impact on other domains in Poland will not change. The species tolerance range for the preferred climatic parameters is given in Web. 4 - I.

Summary

Module	Score	Confidence
Introduction (questions: a06-a08)	0.83	0.67
Establishment (questions: a09-a10)	1.00	1.00
Spread (questions: a11-a12)	0.75	0.75
Environmental impact (questions: a13-a18)	0.55	0.70
Cultivated plants impact (questions: a19-a23)	0.30	0.50
Domesticated animals impact (questions: a24-a26)	0.75	1.00
Human impact (questions: a27-a29)	1.00	1.00
Other impact (questions: a30)	0.75	0.50
Invasion (questions: a06-a12)	0.86	0.81
Impact (questions: a13-a30)	1,00	0.74
Overall risk score	0.86	
Category of invasiveness	very invasive alien species	

A6 | Comments

This assessment is based on information available at the time of its completing. It has to be taken into account. however. that biological invasions are. by definition. very dynamic and unpredictable. This includes introductions of new alien species and detection of their negative impact. As a result. the assessment of the species may change in time. For this reason it is recommended that it regularly repeated.

Below you can include your own comments on the assessment.

acomm42.	Comment:
	The Persian hogweed was classified in this assessment as very invasive alien species in
	Poland, scoring high in all modules used for calculation except for impact on cultivated
	plants (0.30; questions: a19-a23). In the human impact module (questions: a27-a29) the
	species scored the maximum value (1.0) and in environmental impact module (questions:
	a13-a18) this value was 0.55. It is noteworthy that the value of 0.75, scored in the two
	remaining modules (on domesticated animals impact (questions: a24-a26 and other impact
	(question: a30) is merely 0.01 lower than the threshold value that allows classification of
	species as very invasive.
	Although occurrence of this species in the natural environment in Poland has not been
	confirmed, because of the difficulties in its identification, this possibility cannot be ruled
	out. Nevertheless, scores in the modules connected with the invasion process indicate that
	the risk of introduction (questions: a06-a08 – score 0.83), establishment (questions: a09-
	a10) and spread (questions a11-a12) of the Persian hogweed in Poland are very high (values
	0.83, 1.0 and 0.75, respectively).
	These considerations should be taken into account when decisions are made about the
	management approach for the assessed species, including their prioritisation.

Data sources

1. Published results of scientific research (P)

Archier E, Devaux S, Castela E, Gallini A, Aubin F, Le Maklimatu, Aractingi S, Bachelez H, Cribier B, Joly P, Jullien D, Misery L, Paul C, Ortonne JP, Richard MA. 2012. Carcinogenic risks of Psoralen UV-A therapy and Narrowband UV-B therapy in chronic plaque psoriasis: a systematic literature review. Journal of the European Academy of Dermatology and Venereology, 26: 22-31.

Dostál P, Müllerová J, Pyšek P, Pergl J, Klinerová T. 2013. The impact of an invasive plant changes over time. Ecology letters 16 (10): 1277-84.

EPPO 2013. Reporting Service - Invasive Plants No. 11 Paris, 2013-11-01: 2013/251 The German lists of invasive alien plants.

Elven R. 2005. Norwegian flora (Norsk Flora), seventh edition. Oslo, Norway: Det Norske Samlaget, 1230 pp.

Fremstad E, Elven R. 2006. The large hogweed Heracleum species in Norway (De store bjornekjeksartene Heracleum i Norge). Trondheim, Norway: Norwegian University of Science and Technology, 45 pp.

Fröberg L. 2010. Heracleum L. In: Flora Nordica (Thymelaeaceae to Apiaceae) [wyd. Jonsell B, Karlsson T]. Sztokholm, Szwecja: Szwedzkie Muzeum Historii Naturalnej, 224-234.

Gucker, Corey L. 2009. Heracleum mantegazzianum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2017, December 19].

Guzik J. 1994. Ocena stopnia zagrożenia rodzimej flory Polski oraz niebezpieczeństwa jakie może stwarzać dla człowieka barszcz Sosnowskiego (*Heracleum sosnovskyi* Manden.) - na podstawie wyników badań w południowej części kraju, Polska Akademia Nauk, Instytut botaniki im. W. Szafera, Kraków

Hansen SO, Hattendorf J, Wittenberg R, Ya Reznik R, Nielsen C, Ravn HP, Nentwig W., 2006. Phytophagous insects of giant hogweed Heracleum mantegazzianum (Apiaceae) in invaded areas of Europe and in its native area of the Caucasus, European Journal of Entomology 103 (2): 387-395.

Hejda M, Pyšek P, Jarošík V. 2009. Impact of invasive plants on the species richness, diversity and composition of invaded communities. Journal of Ecology 97: 393-403.

Jahodová Š, Trybush S, Pyšek P, Wade M, Karp A. 2007a. Invasive species of Heracleum in Europe: an insight into genetic relationships and invasion history. Diversity and Distribution 13: 99-114.

Jahodová Š, Fröberg L, Pyšek P, Geltman D, Trybush S, Karp A. 2007b. Taxonomy, identification, genetic relationships and distribution of large *Heracleum* species in Europe. In: Pyšek P., Cock M.J.W., Nentwig W., Ravn H.P. (red.), Ecology and management of Giant Hogweed (*Heracleum mantegazzianum*), s. 1-19. CABI, Oxfordshire, UK.

Jandová K, Dostál P, Cajthaml T. 2014a. Searching for Heracleum mantegazzianum allelopathy in vitro and in a garden experiment, Biological Invasions, 1-17. doi: 10.1007/s10530-014-0771-5.

Jandová K, Klinerova T, Mullerova J, Pyšek P, Pergl J, Cajthaml T, Dostál P. 2014b. Long-term impact of Heracleum mantegazzianum invasion on soil chemical and biological characteristics. Soil Biology and Biochemistry 68: 270-78.

Klingenstein F. 2007. NOBANIS – Invasive Alien Species Fact Sheet – Heracleum mantegazzianum – Database of the North European and Baltic Network on Invasive Alien Species - NOBANIS www.nobanis.org, dostęp 08.12.2017.

Krinke L, Moravcova L, Pyšek P, Jarošik V, Pergl J, Perglova I. 2005. Seed bank of an invasive alien, Heracleum mantegazzianum, and its seasonal dynamics. Seed Science Research 15(03): 239-48.

Łyszczarz R. 2012. Możliwości ograniczenia występowania barszczu Sosnowskiego (*Heracleum Sosnowskyi* Manden.) w otulinach i na łąkach Doliny Kanału Bydgoskiego, Ekologia i technika, 20(2): 75-80.

Maafi ZT, Sturhan D, Subbotin SA, Moens M. 2006. Heterodera persica sp. n. (Tylenchida: Heteroderidae) parasitizing Persian Hogweed Heracleum persicum (Desf. ex Fisch.) in Iran. Russian Journal of Nematology, 14(2):171-178. http://www.russjnematology.com.

Moravcová L, Pyšek P, Krinke P, Pergl J, Perglová I, Thompson K. 2007. Seed germination, dispersal and seed bank in Heracleum mantegazzianum. [In:] P. Pyšek P., M.J.W. Cock, W. Nentwing, H.P. Ravn (red.), Ecology and Management of Giant Hogweed (Heracleum mantegazzianum), ss. 74–91. CABI, Oxfordshire, UK.

Myrås H. 1978. Interaction between plants with particular emphasis on a phenomenon called allelopathy. Probing interaction between Heracleum laciniatum Horn. hogweed and other plants. Masters thesis. (Interaksjon mellom planter med særlig vekt på allelopati. Undersøking av interaksjon mellom Heracleum laciniatum Horn. tromsøpalme og andre planter.) Norway: University of Tromso, 266 pp.

Myrås H, Junttila O. 1981. Interaction between Heracleum laciniatum and some other plants. Ecography, 4, 43-48.

Nielsen C, Ravn HP, Nentwig W, Wade M. (eds.) 2005. The Giant Hogweed Best Practice Manual. Guidelines for the management and control of an invasive weed in Europe. - Forest and Landscape Denmark, Hoersholm, 44 pp. http://www.giant-alien.dk/pdf/Giant_alien_uk.pdf

OEPP/EPPO. 2009a. *Heracleum mantegazzianum, Heracleum sosnowskyi* and *Heracleum persicum*, Bulletin OEPP/EPPO 39: 489-499. doi:10.1111/j.1365-2338.2009.02313.x.

OEPP/EPPO. 2009b. *Heracleum mantegazzianum, H. sosnowskyi* and *H. persicum,* Bulletin OEPP/EPPO Bulletin 39(3): 465-470.

Pyšek P, Coock MJW, Nentwig W, Ravn HP. (red.). 2007. Ecology and Management of Giant Hogweed, CABI International, Atheneaum Press, Gateshead

Pytlarczyk A, Sachajdakiewicz I, Mędrzycki P. 2013, Barszcz Sosnowskiego vs Barszcz pospolity: inwazyjność a wzorce alokacji w funkcje generatywne i wegetatywne, Materiały konferencyjne 56 Zjazdu Polskiego Towarzystwa Botanicznego w Olsztynie. Wyd. Uniwersytet Warmińsko-Mazurski, Olsztyn.

Rijal D, Falahati-Anbaran M, Alm T, Alsos G. 2015. Microsatellite markers for Heracleum persicum (Apiaceae) and allied taxa: Application of next-generation sequencing to develop genetic resources for invasive species management. Plant Molecular Biology Reporter, 33: 1381-1390.

Rozporządzenie Ministra Środowiska – rozporządzenie Ministra Środowiska z dnia 9 września 2011 r. w sprawie listy roślin i zwierząt gatunków obcych, które w przypadku uwolnienia do środowiska przyrodniczego mogą zagrozić gatunkom rodzimym lub siedliskom przyrodniczym (Dz. U. Nr 210, poz. 1260).

Rozwadowska R. 2003. Inwazyjne rośliny toksyczne w OAK na przykładzie *Heracleum mantegazzianum* s.l., Wyższa Szkoła Ekologii i Zarządzania, Warszawa

Rzymski P, Klimaszyk P, Poniedziałek B, Karczewski J. 2015. Health threat associated with Caucasian giant hogweeds: awareness among doctors and general public in Poland. Cutaneous and Ocular Toxicology 34: 203-207.

Sachajdakiewicz I. 2008. Ocena skali inwazji barszczu olbrzymiego (*Heracleum mantegazzianum* s.l.) w północnowschodniej i centralnej Polsce, porównanie skuteczności badań ankietowych i terenowych, Wyższa Szkoła Ekologii i Zarządzania w Warszawie, Warszawa

Sachajdakiewicz I, Mędrzycki P. (red.) 2014. Wytyczne dotyczące zwalczania barszczu Sosnowskiego (*Heracleum sosnowskyi*) i barszczu Mantegazziego (*Heracleum mantegazzianum*) na terenie Polski. Opracowanie wykonane przez Fundację "Palący Problem – Heracleum" na zlecenie Generalnej Dyrekcji Ochrony Środowiska ze środków Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej, 148 ss.

Sobisz Z. 2007. Phytocoenoses with *Heracleum sosnowskyi* Manden. in Central Pomerania. – Roczniki AR Pozn., Bot.-Steciana 11: 53–56.

Śliwiński M. 2009. Charakterystyka wybranych gatunków rozprzestrzeniających się na obszarach mokradłowych Polski – Barszcz Sosnowskiego *Heracleum sosnowskyi* Manden. i barszcz Mantegazziego *Heracleum mantegazzianum* Somm. et Levier. [in:] Z. Dajdok, P. Pawlaczyk (red.), Inwazyjne gatunki roślin ekosystemów mokradłowych Polski, ss. 54-57. Wydawnictwo Klubu Przyrodników, Świebodzin.

Tappeiner U, Cernusca A. 1996. Microclimate and Fluxes of Water Vapour, Sensible Heat and Carbon Dioxide in Structurally Differing Subalpine Plant Communities in the Central Caucasus; Plant, Cell & Environment 19(4): 403; 7. doi:10.1111/j.1365-3040.1996.tb00332.x.

Thiele J, Otte A. 2007. Impact of *Heracleum mantegazzianum* on invaded vegetation and human activities. In: Pyšek P, Cock MJW, Nentwig W, Ravn HP (eds) Ecology and management of Giant Hogweed (*Heracleum mantegazzianum*). CAB International. p. 144-156.

Thiele J, Otte A, Eckstein R.L. 2007. Ecological needs, habitats preferences and plant communities invaded by *Heracleum mantegazzianum*. [in:] P. Pyšek, M.J.W. Cock, W. Nentwig, H.P. Ravn (red.), Ecology and Management of Giant Hogweed (*Heracleum mantegazzianum*), ss. 126–143. CAB International, Oxfordshire, UK.

Tokarska-Guzik B, Bzdęga K, Nowak T, Urbisz A, Węgrzynek B, Dajdok Z. 2015. Propozycja listy roślin gatunków obcych, które mogą stanowić zagrożenie dla przyrody Polski i Unii Europejskiej. Na zlecenie Generalnej Dyrekcji Ochrony Środowiska, 178 ss.

Wasowicz P, Przedpelska-Wasowicz EM, Kristinsson H. 2013. Alien vascular plants in Iceland: Diversity, spatial patterns, temporaltrends, and the impact of climate change. Flora 208: 648-673.

Wille W, Thiele J, Walker EA, Kollmann J. 2013. Limited evidence for allelopathic effects of giant hogweed on germination of native herbs. Seed Science Research 23(02): 157-62.

2. Databases (B)

3. Unpublished data (N)

Personal communication from the sfatt of the Botanical Garden of the Polish Academy of Sciences in Warsaw on alien hogweeds.

4. Other (I)

Websides:

- 1. http://www.theplantlist.org/about/#wcsir.
- 2. urn:lsid:ipni.org:names:843131-1.
- 3. https://www.gbif.org/species/3628745.
- 4. https://www.cabi.org/isc/datasheet/120209.
- 5. http://www.eppo.int/QUARANTINE/Pest_Risk_Analysis/PRAdocs_plants/09-
 - 15076%20PRA%20report%20Heracleumpersicum%20rev%20post%20WPPR.doc.
- 6. http://barszczsosnowskiego.ur.krakow.pl/index/site/2323.

5. Author's own data (A)

Own data on fungal attack on the species.

Own data on the presence of invasive alien hogweeds near a popular tourist trail.