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Abstract

This paper generalizes the standard methods of solving rational expectations models to the case
of time-varying nonstochastic parameters, recurring in a finite cycle. Such a specification occurs
in a simple stylized New Keynesian model of the euro area when we combine the rotation in the
ECB Governing Council (as constituted by the Treaty of Nice) and home bias in the interest
rate decisions taken by its members. In small and mid-size economies, this combination slightly
increases output and inflation volatility, as compared to a monetary policy setup without rotation.
The method of Christiano (2002) has also been applied to solve the model when we assume a
lagged perception of foreign macroeconomic shocks by domestic agents. When the cross-country
synchronization of shocks is low or moderate and when these shocks are relatively persistent, the
exclusion of contemporaneous foreign shocks from domestic agents’ information sets may raise the
volatility of output. There is also some tentative evidence that this effect could particularly affect

mid-size economies.
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1 Introduction

The launch of the euro area project has opened space for empirical research and policy discussions
on asymmetric shocks and adjustment mechanisms in their aftermath. Achieving a high capacity to
absorb such shocks in the absence of autonomous monetary and exchange rate policy has become one
of key economic policy targets, both for member and candidate countries. Market-based adjustment
rests mainly upon the competitiveness channel (see European Commission, 2006, 2008; Narodowy Bank
Polski, 2009). The adjustment process, however, may be hampered by the procyclical real interest rate

mechanism (,Walters critique”; see Walters, 1994).

The functioning of both mechanisms is highly dependent on the way in which economic agents in
individual countries form their expectations. When a high inflation rate in an overheated economy
translates into higher inflation expectations, then an asymmetric cyclical position — given weak (or no)
reaction from the common central bank — results in a low real interest rate. This should additionally fuel
economic activity, boost the cyclical amplitude and prolongue the period of adjustment. Nevertheless, if
rational agents foresee that a protracted boom will undermine their country’s external competitiveness,
they anticipate the impact of deteriorated competitiveness. Consequently, they should reduce their

expectations of future output gap and inflation rate, which weakens the real interest rate mechanism.

Expecations play therefore a key role in the functioning of both mechanisms and a thorough analysis
of the adjustment dynamics is only possible when the expectation formation process is modelled with
due precision. In this article, we apply a stylized, New Keynesian-based framework with rational
expectations. With a hybrid specification of the IS and Phillips curves, it can — however — encompass
various specifications of expectations being a linear combination of rationally expected values, past

observations and a constant (e.g. adaptive or static).

A rational expectations model needs to be solved before use in simulation analyses. In this paper
we argue that, under certain assumptions regarding monetary policy framework in the euro area and
given the empirical evidence on expectations in the euro area from the literature, the application of

classical solution methods (as in Blanchard and Kahn, 1980) can be insufficient.

Firstly, this is because the rotation scheme in the ECB Governing Council (henceforth: the Council), as
constituted by the Treaty of Nice, may imply time-varying parameters in the Taylor rule approximating

the ECB decisions. At present, the Council includes all the national central bank governors from the



euro area countries with the right of vote in every decision meeting.! In this institutional setup, further
euro area enlargement would imply a growing number of the Council members. This could lower the
effectiveness of the decision process due to coordination problems (see e.g. Gerlach-Kristen, 2005).
This was the motivation behind introducing a rotation system after the number of euro area members
would exceed 15.2 Under the Treaty, part of the governors would be rotationally excluded from the
voting. As Subsection 2.2 presents, a time-varying model is adequate when the rotation is coupled

with some home bias of the Council members in taking interest rate decisions.

Secondly, the inclination of economic agents to form inflation expectations first and above all on the
basis of the events in the domestic economy justifies imposing heterogenous information sets across
countries and hence across model equations. The simulation results presented in the paper suggest

that both aspects can impact the volatility of inflation and output in the monetary union countries.

Section 2 describes the proposed model of a monetary union and discusses the limitations of standard
solution methods in its case. Section 3 reviews the literature on solving rational expectations models,
with particular attention being paid to the metod of Christiano (2002) applied here. In Subsection 3.2
a method of solving a model with variable coefficients is proposed. Section 4 presents the application

of the methods considered. Section 5 concludes.

2 New Keynesian model of cross-country adjustment within the

euro area

2.1 Adjustment mechanisms in the rational expectations model

The model considered in this paper draws heavily on the workhorse 3-equation New Keynesian model
for monetary policy analyses. It is composed of an output gap equation (IS curve), inflation equation
(Phillips curve) and nominal interest rate equation (central bank rule). The model has been extended
to capture specific features of a group of open economies, forming a monetary union, with the

competitiveness channel and the real interest rate effect.

The union-wide monetary policy is described by a Taylor rule with smoothing (see e.g. Sauer and

Sturm, 2003, for an extensive survey on Taylor rule applications as approximations to the ECB policy):

11t also includes the ECB Board of Directors. For more details on the institutional context and the reform, see
Narodowy Bank Polski (2009); Gorska (2009); Kosior et al. (2008); Szymczyk (2008).
2This is the case since January 1st, 2009 when Slovakia adopted the euro.
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with 4, — nominal central bank rate at time ¢, y; — output gap of the monetary union, m; — inflation
rate in the monetary union, r* — natural interest rate, 7* — inflation target of the common central
bank, p € (0;1) — smoothing parameter, v, > 1, 7, > 0 — parameters for central bank reaction to
deviation of inflation from the inflation target® and an open output gap respectively. The inflation
rate and output gap in the entire monetary union are calculated as weighted averages over the member

countries:

T = ijwj,t (2)
j=1

Y = ijyj,t (3)
j=1

Country weights (vector w,, 1) reflect relative sizes of n economies (j = 1,...,n) participating in the
monetary union..*

The annualized inflation rate in country j (7;) evolves according to a hybrid Phillips curve (see Gali

and Gertler, 1999; Gali et al., 2001):

Tt = Wr i BTt + W jTje—1 + VY5 + €54 (4)

with €7, — cost-push shock in country j, y;: — output gap in j. The path of the output gap is
determined by the following IS curve, augmented with open economy components (see Clarida et al.,

2001; Goodhart and Hofmann, 2005):

Yit = BrEwjis1 + Boyji—1 — Br (it — Eymjepr —15) +
—Be (Pt — P_j) + Bsy—ju + €4,

(5)

where y_; ; denotes the output gap outside j, P;+ — log-level of prices in j, P_;, — log-level of prices

3The condition 7, > 1 is required for the Taylor rule (Taylor, 1993) to be fulfilled and the equilibrium to be
determinate.

4Country weights used in the construction of Harmonized Index of Consumer Prices (HICP) for the euro area
are derived from national accounts as the share of consumption spendings of households in a given country in
the analogous value for the euro area. See for more: Compendium of HICP reference documents, Eurostat,
http://epp.eurostat.ec.europa.eu/cache/ITY OFFPUB/KS-A0-01-005/EN/KS-A0-01-005-EN.PDF.
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The standard closed-economy specification has therefore been complemented with the real exchange
rate divergence®, P;; — P_;, and external demand gap, y—;. This corresponds to the point made
by Clarida et al. (2001) that demand conditions in a small open economy are determined by external
demand conditions and the ratio of domestic prices (expressed in foreign currency) to the world’s price
level. Excess appreciation undermines the price competitiveness of domestic goods abroad (5. > 0),
and foreign economic downturns translate into slowdowns at home (s > 0). The rest of the parameters

in (4) and (5), in line with the New Keynesian literature, should be positive.

The model composed of equations (1)-(8) can be written in the form (13). The detailed description of

matrix construction is provided in Appendix 1.

With standard assumptions, such as constant country weights in equations (2) and (3) as well as
a standard expectation operator in (4) and (5), we can apply standard methods when solving the
model for simulations (see Subsection 3.1). The following two subsections, however, will argue that
these assumptions might have to be relaxed for the sake of an adequate description of the euro area

economy.

2.2 Rotation scheme in the ECB Governing Council

The mandate of the Council is to maintain price stability in the entire euro area (see European
Central Bank, 2003). When we interpret this literally, the conduct of monetary policy approximated
by equations (1)-(3) would remain unaffected. However, the opponents of the voting system reform in

the ECB claim that it is a step back in the european monetary integration that additionally emphasizes

5There is no nominal exchange rate dynamics between monetary union member countries, so the real exchange rate
variance is only due to the difference in price log-levels.



the national structure of the Council (see Belke, 2003). Therefore, the counsequences of such a danger

are worth considering.

Assume that every central bank governor implicitly prefers some nominal interest rate level, conditional

upon the (possibly asymmetric) cyclical position of his country of origin:

ije=1—=p) [+ 7"+ (50 — 7)) + Vyyje) + pit— (9)

If he or she wanted to reduce the cyclical stress in their country of origin (see Clarida et al., 1999;
Calmfors, 2007), they would be inclined to vote in favour of interest rate changes towards i, ., even
if these changes were at odds with (1).® The final preference of the national central bank governor,
declared in the voting, is defined as a weighted average of the ,pro-european” rate in (1) and the

preferred rate for his country of origin, as in (9):

i =(1—a)i+aij, (10)

The parameter o € [0; 1] measures the home bias in the decision of the Council’s members.” With
fully ,,pro-european” voters, & = 0. The other limiting case of fully home-biased voters occurs when
a=1.

The outcome of voting at t is approximated by the arithmetic average over preferences submitted by
the governors allowed to vote at ¢. After the reform, only 15 (of a higher number of) Council members
would vote at a single meeting. Let a;; be a dummy equal 1 when country j representative has got
the right to vote at ¢ and 0 otherwise. With these assumptions, the final interest rate decision of the

ECB can be written as:

_ 1 n
R (1= a)i j 11
it > > ajp- (1= a)is+ aijy) (11)

j=1

Substituting (1)-(3) and (9) into (11), we obtain the final form of the Taylor rule for the ECB:

6Clarida et al. (1999) differentiate between a cyclical and a structural (long-term) stress. Calmfors (2007) and Flaig
and Wollmershduser (2007) find some evidence that many euro area countries have suffered from the latter art of stress
in the period 1999-2006. Nonetheless, the inclusion of structural stress into the governors’ preferences would result in
a ,wandering” steady state of the model. In consequence, it is not impossible to analyze the second-moment properties
of variables with the tools applied in this paper, but this extension would make the results dependent on the estimates
of long-term inflation differentials (Harrod-Balassa-Samuelson effect) and natural rates of interest. This is why we leave
the structural aspect of the stress for future empirical research.

"In this paper, we assume equal « across all Council members.
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where symbols in bold subscripted ¢ are vectors of size n x 1 containing a sequence of identically
denoted variables over countries, and #* = 7* - 1,,1. Note that in (12) the parameters for inflation
rates and output gaps in individual economies vary in time. In consequence, so does the matrix B in
(13).

Non-constant parameters of the model (13) prevent us from applying standard solution methods

described in Subsection 3.1.

2.3 Heterogeneity in formation of expectations

A vast battery of literature analyses the cross-country heterogeneity of the euro area and its
consequences for the common monetary policy conduct. The most often explored research fields include
differences in product and labour market flexibility (HM Treasury, 2003; Rumler, 2007), inflation
persistence (Benigno and Salido, 2006), monetary transmission mechanisms (Clausen and Hayo, 2006)
or business cycle synchronization (Skrzypczynski, 2006). A key dimension of heterogeneity are also
expectation formation mechanisms.

There is empirical evidence in favour of this heterogeneity. The estimates of Taylor rule parameters for
countries that formed the euro area in 1999 suggest that individual central banks conducted monetary
policy in significantly different manners before they finally passed this responsibility to the ECB
(Eleftheriou et al., 2006). Berger et al. (2006) find econometric evidence that expectations of future
ECB decisions substantially varied in the geografic dimension in the first years of the euro area.
Woodford (2006) argues that the process of learning the new monetary policy regime among economic

agents and hence altering their expectation formation habits might be protracted.

In a monetary union, agents could expect the foreign macroeconomic shocks to hit their domestic
economy via a few channels. Firstly, the common central bank would react to foreign demand shocks
with a move in the common policy rate, which would in turn translate directly into change in domestic
monetary conditions. Secondly, a foreign shock affects future price dynamics abroad. As a result,
the real exchange rate would change — even when there were no direct price effects at home — which

is another way to influence the domestic monetary conditions. Thirdly, foreign business cycle affects



the domestic output due to international trade and investment links. Economic agents are therefore

capable to predict an economic slowdown at home when they observe one in other countries.

Outside a monetary union, agents would have less incentive to monitor the foreign events. Firstly, the
reaction of foreign central banks to foreign shocks does not automatically affect the nominal interest
rates at home, which remain under the command of the domestic central bank. Secondly, a shock
affecting foreign price dynamics does not necessarily translate into a shift in competitive position of
domestic versus foreign producers, as measured with the real exchange rate. More precisely, this rate is
also dependent on the nominal exchange rate, which can absorb asymmetric shocks (see Stazka, 2008).
Because of these two channels, Marzinotto (2008) argues e.g. that mid-size economies are largely at
risk of excessive wage growth. Namely, their trade unions are too small to influence the ECB decisions
in a significant way and too large not to fear the loss of external competitiveness. Thirdly, the ample
literature on the endogeneity of OCA criteria (e.g. integration of finance and trade in a common
currency area, see Frankel and Rose, 1998 or Narodowy Bank Polski, 2009 for a survey) suggests

growing interdependence of individual countries’ output gaps after creating a monetary union.

For the reasons listed above, domestic agents — especially at the initial stages of participation in a
monetary union — can be accustomed to form their expectations mainly on the basis of domestic events
and to a lesser extent on the basis of foreign shocks. This would break the underlying assumptions of
the standard expectations operator applied in the model (13), based on a common information set of
agents in each country. As a consequence, this aspect of heterogeneity must be analyzed beyond the

standard model solution methods.

3 Solving linear rational expectations models

3.1 Literature overview

A dynamic linear model with rational expectations can be written as (Blanchard and Kahn, 1980):

AEtXt+1 = BXt + CEt (13)

with x; — vector of variables at time ¢, &; — vector of random disturbances, A, B, C — matrices of
model parameters. The solution of the model is a transformation of (13) into a recursive law of motion

(see Blanchard and Kahn, 1980; Uhlig, 1999; Klein, 2000; Sims, 2001):

10



Xt = Mxt—l + N€t (14)

This transformation is usually performed to run counterfactual simulations, impulse-response functions
and second moment analysis (DeJong and Dave, 2007; Christiano, 2002). Lindé (2005), Fuhrer
and Rudebusch (2004) and other authors stress the possibility to use the mapping to estimate the
parameters of the solved model (14) directly via full information maximum likelihood method. They
show with Monte Carlo simulation exercises that such estimation outperforms the GMM estimator,

traditionally applied in empirical investigations of the New Keynesian model.

Blanchard and Kahn (1980) solved the model (13) assuming nonsingularity of A and performing the
Jordan decomposition on A~'B. They also developed a milestone theorem about the existence and
uniqueness of a solution: the number of variables predetermined at ¢ included in x; must equal the

number of eigenvalues of the matrix A~'B that do not exceed 1 in absolute value (saddle-path stability).

The assumption of a nonsingular matrix A is relaxed by Klein (2000) as he applies generalized complex
Schur decomposition for matrices A and B. A similar method is proposed by Sims (2001) for the
model (13) expressed in terms of true future values of variables and expectation errors rather than the
expectation operator. The solution results from a unique linear mapping from &; to the expectation
errors. Soderlind (1999) applies a Klein-based algorithm and admits that generalized eigenvalues equal
1 in absolute terms can be classified as stable when the vector x; contains variables that are explicitly
nonstationary by construction (which also is the case in our model). Uhlig (1999) proposes a method

of undetermined coefficients, which reduces the problem to solving a matrix quadratic equation.

Christiano (2002) proposed a modification of the latter method applicable when individual equations
in the system have various information sets associated with their expectational terms. This approach
is useful when different groups of economic agents take their decisions with heterogenous knowledge
of contemporaneous values of economic shocks. Nonlinear models are solved with numerical methods

(see DeJong and Dave, 2007 for an overview).

The solutions of models with variable coefficients proposed in the literature are usually designed for
stochastic parameters (e.g. Markov switching with finite number of states). Farmer et al. (2008) apply
a minimum state variable solution that expands the vector x; times the number of possible states and

adjust the parameter matrices appropriately.

11



3.2 Model with time-varying parameters

The time-varing Taylor rule (12) requires solving a model like (13), but with time-varying parameters:

A(t)Et (Xt+1) = B(t)Xt + C(t)ft (15)

The solution proposed below builds upon the algorithm by Klein (2000)%, while introducing some
necessary generalizations. It is useless to start with a single generalized Schur decomposition because
the factor matrices we would obtain inherit the nonconstancy and parameter matrices for x; and
E; (x4+1) would not be upper triangular as we need.’ Instead, we exploit the assumption that Ay
and B vary in time, but the values recur after m periods, i.e. A1) = Apyjtim) and By =
B(i4jtim) for each j =0,1,...,m —1 and each i € N. Let us first factorize the matrices A ) and B

using a sequence of generalized complex Schur decompositions:

QuyAwZw = Sw)
QuyBwZu =T

(16)

with S and T — upper triangular matrices, Q and Z — unitary matrices (QQY = Q#Q = ZZ" =
Z"7Z =T1).1° For the decomposition to be unique, we impose a restriction that diagonal elements of

S and T are ordered in such a way that generalized eigenvalues of A and B (equal IS,—) ascend with
rising index 1.

Using (16) we can rewrite (15) for each ¢ as:

S(t)Zg)EtxtH = T(t)Zg)xt + Q(t)C(t)ft (].7)
Let us write the equation for ¢, ¢t + 1, ..., t +m — 1 and solve each of them for x:

8In our model, it would suffice to allow for only one time-varying matrix — either A or B, as with the assumptions
from section 2.2 we could place all time-varying parameters into a single matrix. However, it does not really simplify
further derivations as the generalized Schur decomposition with imposed eigenvalue ordering is unique and all the output
matrices would inherit time-variability, no matter how many input matrices (1 or 2) would bear this feature. Neither
does time-dependent C;y cause any significant analytical or numerical complication. This is why the system (15) and
its solution is expressed in more general terms that our example would require.

9A time-varying matrix Z ;) (see (16)) does not permit us to define the substitution (23) in a unique way. If we chose
some arbitrary Z matrix in time (say, Z)), every equation would link two different variables, which would obviously
leave no space to proceed. This problem would indeed be solved by finding the generalized Schur decomposition for A ;)
and B(; ). However, in the latter case, there would be no Q) to premultiply any equation leaving both matrices in
question upper triangular (see (16)).

105y perscript H denotes hermitian transpose. S,T,Q and Z are complex matrices.

12



1 —1
Xt = Z)T St Z{}) B (xe+1) = ZnT (3 Qy Cny i

Xi41 = Z(t+1)T(_t}r1)S(t+1)Zg+1)Et+1 (X¢42) — Z(t+1)T(_t_1|_1)Q(t+1)C(t+1)ft+1
(18)
Xt+m—1 = Z(t+m—1)T(7tim,1)S(t+m—1)zg+m,1)Et+m71 (Xt+m) +

_Z(t+m—1)T(;1+m,1)Q(t+m—l) C(t—&-m—l)fterfl

A bottom-up sequence of substitutions and the law of iterated expectations (see Ljungqvist and

Sargent, 2004) allows us to write an equation for x;:!!
m—1
Xt = [H Ziin Tk Swsn Dt | B (Xevm) +
=0
D)
m—1 k
_ H _ _
- { {Z (H Z(t+l—1)T(t~lHI)S(t+l—1)z(t+l—1)> Ze1) T (i) Qe Ciery Befere | + Z(z)Tu)lQ(t)C(t)ft}

k=1 =1

—1
30 Riqe) Biefeqr

(21)
Once again, we perform a complex generalized Schur decomposition of D(; and I (as the parameter

matrix for x;):

QuyDwZw) =S
QulZy) =T,

(22)

with the usual restriction on ordering generalized eigenvalues. Let us define an auxiliary variable:

11t would be much simpler to obtain (21) at the cost of some loss of generality. Assume nonsingular B(t)1 for each ¢
(this is i.a. the case in the example considered here) and solve m first equations for x:

Xy = B(_t)lAl(z)Et (xt+1) — B(_t)lc(t)ft )

xe+1 = B Ay Ber1 (ke2) = B ) Craqnyfetn (19)
19

Xtfm—1 = B@im,DA(Hmﬂ)EtH (Xt4m) — B(}im,l)c(wmﬂ)fwm—l

A sequence of substitutions similar to (18) and iterated expectations yield the following equation, equivalent to (21):

m—1 k
—1 -1 —1 -1 —1
Ty = B(t) A(t)B(t+1)A(t+1) e B(t+m—1)A(t+m_1)Et (xt+m) — B(t) |:<k§ <l1_I A(t+l—1)B(t+l)) C(t+k)Etft+k> + C(t)ft:|
—1 —1

D) 1
—
2y 0 Ry Bifeyk

(20)

13



In line with the conventional treatment in the literature, let x; be ordered in such a way that the first
partition (x7.) contains variables predetermined at ¢. Analogous partitioning of X, substitution of
(22) and (23) into (21), premultiplication by Q) and conformable partitioning of S, T ;) and Q)
yield:

S11¢) Si2¢ X1, ¢4 Tr11¢) Ti2¢ X1, Qi _
(t) ) E, nol (t) (t) n (t) (Ezhb:ole(t)EtftJrk)

0 Saa X2 t+m 0 Ta2(1) X2t Q2.1

Following Klein (2000), we solve the lower, decoupled row of (24) for X5 4:

Xa4 = ngl(t)szz(t)Etiz(t),Hm - ngl(t)QZ(t) (Ezz)le(t)EtfHk) (25)

The finite cycle of length m, in which the parameters of A,y and B recur, implies D,y = D4
and Ry ;) = Ry(¢4+m) for each k. We can therefore shift (21) m periods forward without changing the

parameters:

Xtpm = D) Brym (Xevam) + Spo Ry EegmEemrn (26)

Matrices Q, Z, S and T, resulting from the Schur decomposition of both matrices of interest in the
above system, will equal those obtained in (22). Then, we can shift shift (25) by any multiple of m

without changing the parameters:

X2 t4m = ngl(t)s22(t)Et+m)~(2,t+2m - ngl(t)Qz(t) (7 Ry EegrmErrmer)

Xo,t+2m = Topi S22() BrvamXa,t+am — Tag Qo) (Z120 Ric(t) BeromFrizm-k) (27)

As in (19), a sequence of substitutions in (25) and (27) and iterating expectations allows us to express

X2, as an infinite sum:

14



+oo i
Xae=—) { (Tz_§<t>322<t>) T2 Qa0t) (EZL—_ole<t>Etft+i<m+k)} (28)
i=0
At this point, we need to know the expected path of future random disturbances, conditional on the

information that agents have at t.!? In rational expectations models, autoregressive error terms are

natural by construction and hence commonly applied, so let us assume a VAR representation (see e.g.

Mavroeidis, 2005):

ft = @ftfl + &¢ (29)

With Fieipr, =0, k=1,2,..., we can write the infinite sum (28) as

+o0o 7
= — — m— i-m+k
X2t = *;) [(Tzzl(t)822(t)) T320 Q2 (Zk:Ole(t)(I) " ft)} =
- ST T, YR @) | @] | f = (30)
= > 22(t)P22(t) 22(t)Q2(t) k=0 Vk(t) N t =
=0 ——— H,
F) G @
= —Lyfi

Following Klein (2000), we calculate the elements of L) using the vectorization operator:'?

-1
vec (L(t)) = [I - H%’;) ® F(t)} vec (G(t)) (31)

The existence of the infinite sum stems from (i) fulfilled assumptions of the Blanchard-Kahn theorem
(exactly all unstable generalized eigenvalues of A and B concentrated in the partition (2,2) of matrices

S and T) as well as (ii) stability of the process (29) (eigenvalues of ® lower than 1 in absolute terms).

Substitute (30) into (23) after premultiplication by Z) and conformable partitioning:

Ti Zi1@y Zizp X1,

= (32)
T2t Z21(t) Z22(t) —L(t)ft

12Note that a white noise disturbance immediately simplifies (28) to a linear dependence of X2 + on current f;.
+oo . +oo i
13Premultiply Ly by F(y) and postmultiply by Hy) so that F(y)L)Hpy = i;g Féglesz&l = igl FiGuH{,-

Note that the only difference between this sum and Ly is the first component Gy, so L) — FyL)H) = G-
Vectorize both sides and use the matrix identity vec(ABC) = (CT ® A) vec(B) to get vec (L) — Ha) @ Fy -

-1
vec (Ly)) = vec (Gy)). This can be premultiplied by |T— Hz;) ® F(t>] , unless the matrix is singular.
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After solving out X1 ; from (32), we obtain a linear relationship linking xq ¢, X2+ and f;:

X2t = Zz1(t)ZI11(t)X1,t + (221(t)ZI11(t)Z1z(t) - Z22(t)) Lyt (33)

We exploit the predeterminacy of x; ; to get:

E, (Xt+1)

X1,t+1
X2 t+1
X1,t+1

~1 ~1
Zor(t+1) Ly gy X1em1 + (Z21(t+1)zll(t+1)Z12(t+1) - Z22(t+1)> Ly Eifia

Using (33), we can also replace xa; in x4:

Xt

®f,
I 0
» X1,641 + . f;
Za(+1) L1141y (Z21(t+1)zll(t+1)Z12(t+1) - 222(t+1)) L+ ®
(34)
X1t _ X1t _
X2t Z21(t)zl_11(t)xl,t + (Z21(t)ZI11(t)Zl2(t) - Zzz(t)) Lt (35)
I 0
) X1t + ) f;
RO (Zzl<t>Z11(t>Z12(t> - Z2z<t>) L

In the example considered here, the vector of predetermined variables x; ; contains lags of all elements

in x2;. Accordingly, some rows in A, B(;) and C(;) were trivial identities defining the equivalence

between some elements of x; ;41 and x2 ;. With the relation between x; ; and x2 . in hand, we can

drop these rows and denote the remaining matrices as A ), By and C(;). Rewrite (15) without these

rows, using (34) and (35):
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I 0

A X141+ A fy =
Zo1(0+1) Zy1 41y (Zzl(t+1>ZIqu)le(m) - Zzz(m)) L@
_ I _ 0 _
= B(t) X1t + B(t) f; + Cf;
Zo1(yZiy <Z21(t)zl_11(t)zl2(t) - Zz2(t>) L)
(36)

The solution of (36) with respect to xy ;41 is the searched law of motion of the form (14):

_ I _ I
x1,t+41 = | A . B . X1,¢+
Z21(t+1)z11(t+1) ZZl(t)le(t)
—1
_ I
Ao »
Z21(t+1)zn(t+1)
. 0 _ 0
C+ B(t) — A(t)

(Z21(t)ZI11(t)Z12(t) - ZZZ(t)) L (Z21(t+1)ZI;ll<t+1)Z12(t+l) - Z22(t+1)> L@

37)

3.3 Model with heterogenous information sets

We use the method of undetermined coefficients proposed by Christiano (2002) to solve the model with
heterogenous information sets of economic agents used for forming their expectations in individual

countries of the monetary union.'4

This method ascribes an individual information set to every
equation in the system and expectational terms in any equation are conditional upon the content of
its own information set. Every information set contains all the past values of the random disturbances

and part of its contemporaneous values (in an extreme case: all or none of them).

Christiano (2002) solves a linear dynamic rational expectations model of the form:

r r—1
€t <Z QGiZi 1+ Zﬂist+r—l—i> =0 (38)
i=0

1=0

T
with z; = { Z1: Zoy ] , Z1,¢ - n1-dimensional vector of endogenous variables non-predetermined

at t, z2; contains ¢ lags of z; ; necessary to determine z; ;41 at ¢t + 1. In our model, the lag length

1A detailed description of the method in full generality can be found in Christiano (2002). TFor the sake of
presentational simplicity, this section consumes all the possible simplifications in the case that we are investigating.
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T
does not exceed 1, which means g =0and z; =z1: = | 1 P; 4, y, m is a vector of length

n =2+ 3n (n — number of countries).

However, equation (38) is not equivalent to (13) due to a conceptual difference in expectation operators.
When information sets for individual equations are heterogenous, ¢; (.) denotes rational expectations

based on an equation-specific (i.e. country-specific) information set:

E, (Xl,t+1|Ql,t)

E, (Xz,t+1|Q2,t)
€ (Xp41) = . (39)

L E, (Xn,t+1|Qn,t) ]

At t, only the union’s central bank is familiar with the entire vector of current country-specific demand
T

and supply disturbances, f; = Eyit . The only contemporaneous

Eymt Exat --- Exngt
values of shocks that economic agents in country j take into account are ones concerning their own
country, i.e. €y, and €, ;¢ Shocks to the other economies enter the information set of country j

agents with a one period lag.

The restrictions excluding some elements of f; from some equations’ information sets are summarized
in the matrix 7 sized 2n x n. Its columns correspond with equations in the system, rows — with
elements of f;; 7; ;) = 1 when i-th innovation is included in the information set of equation j and

. 0n><2n+1 In In 1n><1
7i,5) = 0 otherwise. In our setup, 7 =

0n><2n+1 In In 1n><1

f;
In the framework of Christiano, we need to expand the random vector by its first lag: s; =

fi
exactly due to the exclusion restrictions in 7. Like in Subsection 3.2, we assume a VAR respresentation
(29) for f;. This method, however, additionally requires the knowledge of the variance-covariance
34

matrix of e: Vo = F (EET) = with independence of demand and supply disturbances
0 3
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assumed.'® This implies the following VAR representation for s;:

ft @ 0 ftfl Et
= + (40)
fi 1 I 0 0

Knowing the matrices o, a1, a2, B9, 8, and 7, Ve, P (see Appendix 2), we can apply the method of

Christiano (2002) to compute the matrices M, N such that the solution to (38) is of the form

Zy = Mzt—l + NSt (41)

Under complete information sets, the following framework is fully equivalent to the standard methods
(Blanchard-Kahn, Klein, Sims or Uhlig). Moreover, M is always the same as derived via standard
methods, i.e. independent on (in)completeness of information sets. When at least one of the
information sets is incomplete, the key step in pinning down N is an orthogonal projection from
the space of random disturbances included in an equation’s information set (where f;_; and part of f;

jointly belong) to the space of all contemporanous and lagged random disturbances (where s; belongs).

To obtain M, merge z; and z;_; and write the system (38) skipping s;:

Factorize a and b using the generalized Schur decomposition (as in (16)). Arrange matrices Q,Z,S, T
so that the zeros on the main diagonal of S are located in its lower-right portion. This separates

upper-left portions of S and T denoted S1; and T;y; respectively. Partition conformably zZH =

ZH
. Then, use the eigenvalue-eigenvector decomposition:
z

—S7iT11 = PAP™! (43)

Let P denote the rows of P! corresponding to the eigenvalues exceeding 1 in absolute terms. Let

15 Christiano (2002) emphasizes that this input is only required in the presence of at least one non-empty and incomplete
information set.
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Pz
D = ZHl = [ . ~1 [?2, ] Matrix M is finally obtained as lower 7 rows of the matrix
2 n n
—D;'D,.

To find N, define for every equation 7 (i.e. for every column 7. ; in 7) matrix R; as unity matrix in

which the rows corresponding to zeros in the vector 7. ;) were dropped. The orthogonal projection
) o ) o e o\ R;CR] R;®C

mentioned before implies matrices C = )~ @'V, ((I’ ) , P = , ¢, =
cT®'RI C

[ CR! &cC } and [ a; ag ] = ¢;p; ', whereby the number of columns in a; equals the number

(alRl)T 0 0 e 0
afe I
T
0 (a2R2) 0]... 0
of nonzero elements in 7. ;7. Let R = ag@ I , and R be
0 0 ... | (aaRa)" 0
I age T

defined as R with dropped zero rows resulting from zero elements in 7. Let d = Rvec [PT57 + 8], and
let ¢ be defined as matrix R (ao R PT + (oA + 1) ® I) in which the columns were dropped whose
numbers corresponded to the rows in R that we had dropped before. The elements of N are defined
by the relationship vec (NT) = —d_la , whereby the left-hand side vector — before de-vectorization
into N7 — needs to be widened and filled with zeros at the indices of dropped rows in R (dropped

columns in q).

4 Simulation results

The model described in Section 2 and solved with the methods from Section 3 has beed used to simulate

the path of the output gap and inflation rate with different assumptions regarding:

1. the home bias of the ECB Governing Council members (a);

2. the information set underlying the formation of expectations of future output and inflation in

the countries of a monetary union.
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Table 1 contains a set of model parameters used in the simulations. For simplicity, we assume
homogenous parameters of the IS and Phillips curves across countries. Parameter values are median
values of statistically significant estimates among 12 euro area countries over the time span 1999-2008
(from Tor6j, 2009). The parameters, following the dominant empirical approach in the New Keynesian
literature, were estimated via generalized method of moments (see Gali and Gertler, 1999; Gali et al.,
2001; Goodhart and Hofmann, 2005) with standard instrument sets for both curves. The parameters
for the Taylor rule and AR processes of the random disturbances are parametrized as in the literature

overview by Lindé (2005).

Table 1: Parameters of the simulated model

wy 0.55 Or 0.09 Yr 1.5 Pr 0.1
Whp 0.45 Be 0.04 Yy 0.5 Py 0.5
By 0.5 Bs 0.09 p 0.5
B 0.5 ol 0.05

Source: Tordj (2009) Source: Lindé (2005)

Every pair of variances compared below results from a path of variables generated with the same path
of 10000 random shocks. Demand and supply disturbances were assumed to be independent. The
variances of individual shocks were calibrated in such a way that the second moments of the baseline

paths match those observed in the data on inflation and output.

The results generally confirm those obtained from a purely backward-looking model by Kosior et al.
(2008), at least on the qualitative level. The rotation in the ECB Governing Council, coupled with
some home bias in interest rate decisions among its members, can boost the variance of inflation and
output gap. Table 2 presents the results of simulation when a monetary union consists of 4 equally
sized countries and 2 country representatives participate in every vote. The cycle of rotation lasts 8
quarters, and there is a switch every 2 quarters. The standard deviations of output gap and inflation
rise as « increases. For a = 0.5, the standard deviation of the output gap is 0.42% higher than for o = 0
(i.e. in the model with constant parameters). The standard deviation of inflation rises analogously by

1.64%.
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Table 2: S.D. of output gap and inflation (expressed as a share of S.D. under baseline scenario)

a w=0,25 [ w=0,25
0 1.0000 1.0000
0.1 | 1.0003 1.0011
0.2 | 1.0008 1.0033
0.3 | 1.0017 1.0066
0.4 | 1.0028 1.0110
0.5 [ 1.0042 1.0164

When the country sizes differ, so do the results for big, mid-size and small economies. Table 3 presents
the results of simulations generated with a 4-country model of monetary union with relative country
sizes of 0.4, 0.3, 0.2 and 0.1. Once again, 2 country representatives vote at a time, the rotation cycle
is 8 quarters long and the right of vote is granted to the governors 7, 5, 3 or 1 time a cycle, in line

with their country size.

It is only in the largest economy that the output gap volatility slightly declines as « rises. The country
of size 0.3 enjoys a slightly positive « for the same reason. However, starting from approximately
a = 0.3, it suffers from a rise in output volatility as the impact of ,imported” instability from two
small economies and the relative loss of the central bank’s focus in favour of the greatest country
begin to dominate. In the case of the smallest economies, this effect is visible for any positive home
bias because their relative weight in the union-wide Taylor rule declines with growing « (it is more
efficient to make big neighbours ,,pro-european” than to remain small and home-biased) and because
they import each other’s volatility simultaneaously. With a = 0.5, the standard deviation of the

output gap is ca. 0.76 — 0.77% higher and inflation — ca. 2% higher than in the baseline scenario.
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Table 3: S.D. of output gap and inflation (expressed as ratio to S.D. under baseline scenario); different

country sizes

y n

w= w=
a 0.4 0.3 0.2 0.1 0.4 0.3 0.2 0.1
0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 0.9985 0.9999 1.0012 1.0012 0.9961 1.0001 1.0031 1.0028
0.2 0.9971 0.9999 1.0026 1.0026 0.9927 1.0008 1.0066 1.0062
0.3 0.9958 1.0001 1.0041 1.0041 0.9901 1.0020 1.0107 1.0100
0.4 0.9947 1.0004 1.0058 1.0058 0.9881 1.0038 1.0152 1.0145
0.5 0.9937 1.0008 1.0076 1.0077 0.9867 1.0062 1.0201 1.0195

The impact of excluding the contemporaneous values of foreign demand and supply shocks from the
information set of domestic agents is vague, even on the qualitative level. Table 4 is composed of
standard deviations of output gaps when the information sets are incomplete, expressed as shares of
standard deviations in the baseline scenario with complete information. Depending on the correlation
of shocks between countries, serial correlation of country-specific shocks and — possibly — the country

size, the incompleteness of the information set raises or reduces the volatility of output.

When the serial correlation of demand shocks is low, a home-biased information set reduces the variance
of the output gap. Foreign demand shocks with low persistence have only limited impact on the
domestic economy and start to influence domestic expectations once they have partially been absorbed.
Note that the serial correlation of demand shocks at 0—0.2 remains far lower than the empirical evidence

would suggest (see Lindé, 2005).

Incomplete information sets also reduce the output volatility when the synchronicity of shocks between
countries is high. In such a monetary union, the country-specific information set is sufficient to
approximate some of the foreign noise and support the expectations as an auxiliary adjustment channel.
When agents believe that shocks are correlated across countries, they do not fear that an asymmetric

shock would induce inadequacy of the common interest rate and domestic macroeconomic aggregates.

On the other hand, under a high persistence and low symmetry of demand shocks, heterogenous and

incomplete information sets yield higher variance of the output. Only with a lag does highly useful

23



Table 4: Heterogenous information sets — S.D. of output gap (expressed as ratio to S.D. under
homogenous information sets)

country size
cross- .
serial
country correlation of
correlation of 0.4 0.3 0.2 0.07 0.03
demand
demand
shocks
shocks
0 0.78 0.78 0.77 0.76 0.76
0.2 0.91 0.91 0.91 0.90 0.90
0 0.4 1.13 1.13 1.13 1.14 1.14
0.6 1.50 1.52 1.54 1.58 1.58
0.8 2.22 2.30 2.44 2.52 2.57
0 0.72 0.72 0.71 0.71 0.71
0.2 0.85 0.85 0.84 0.84 0.84
0.2 0.4 1.05 1.05 1.06 1.05 1.05
0.6 1.39 1.42 1.44 145 145
0.8 2.02 2.11 2.20 2.30 2.32
0 0.51 0.50 0.49 0.49 0.49
0.2 0.60 0.59 0.59 0.58 0.57
0.4 0.4 0.75 0.74 0.74 0.72 0.71
0.6 0.99 0.99 1.01 1.01 0.99
0.8 1.48 1.55 1.55 1.59 1.64
0 0.23 0.22 0.21 0.20 0.19
0.2 0.28 0.26 0.26 0.24 0.23
0.6 0.4 0.34 0.33 0.31 0.31 0.29
0.6 0.47 0.45 0.43 0.42 0.40
0.8 0.70 0.71 0.69 0.69 0.68
0 0.10 0.09 0.07 0.06 0.06
0.2 0.11 0.10 0.08 0.07 0.06
0.8 0.4 0.13 0.12 0.10 0.08 0.08
0.6 0.16 0.14 0.13 0.10 0.10
0.8 0.19 0.18 0.16 0.14 0.13
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information arrive in agent’s expectations. This hampers the ,expectations” channel of adjustment
and the stabilization of output around the potential level is more protracted, which generates a higher
volatility. Note that such a stochastic environment is a contradiction of what the optimum currency

area theory views as perfect (synchronized business cycles and at most temporary shocks).

Finally, note the effect in the row of Table 4 corresponding to empirically plausible values of demand
shocks’ serial correlation equal 0.6 and cross-country correlation equal 0.4. It suggests that in the
mid-size economies, a limited information set might generate higher output volatility, whereas in
big and small economies — lower volatility. Although this result seems to be quantitatively limited,
the very fact that this model was capable to reproduce it might be seen as a weak confirmation of
some tentative evidence reported in earlier literature. Namely, big economies benefit mainly from the
stabilizing effects of common monetary policy and small ones — from the competitiveness channel. At
the same time, expectation as a supportive channel of stabilization after asymmetric shocks could be
particularly useful in mid-size member countries of a monetary union. In such countries, economic
agents must therefore carefully watch the external environment. This weak implication of the model

certainly needs further research, as it might be of particular importance for countries such as Poland.

5 Conclusions

This paper generalizes the analytical methods of solving linear rational expectations models to the case
of time-varying, nonstochastic parameters. The assumption of a finite cycle in which the parameter
values recur is thereby exploited. The solution is exemplified with the case of autoregressive random
disturbances. We also apply the method of Christiano (2002) to introduce heterogeneity in individual

countries’ information sets.

The simulations based on the former solution method confirm the previous findings from the literature:
the rotation in the ECB Governing Council, as implemented by the Treaty of Nice, coupled with home
bias in interest rate decisions taken by the members of the Council, increases the volatility of output
and inflation in most of the small and mid-size economies. However, the rise in standard deviation —
with the parametrisation considered here — is very limited and amounts to a maximum of 2% in small

economies.

Forming expectations on the country level with a partial, home-biased information set may in turn

lead to a rise or a decline in the output volatility at home, depending on (i) the serial correlation of
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demand disturbances, (ii) their correlation across countries and possibly (iii) the country size. When
the properties of shocks do not conform to the optimum currency area theory, i.e. they are hardly
synchronized and highly persistent, the output volatility can rise as a result of introducing incomplete
information sets. There is also some limited evidence that this effect could particularly occur in mid-size
economies, where expectations stabilize the output to a higher extent than common monetary policy

and competitiveness channel, unlike in big or small economies respectively.

A number of questions arise for further research. First of all, heterogeneity of expectations clearly
interacts with other aspects of euro area heterogeneity, such as market rigidities or inflation persistence.
The inclusion of structural stress into the analysis of ECB rotation framework would be possible when
a profounded research on long-run inflation and natural interest rate differentials within the euro area
were carried out. Also, it would be interesting to use the solution by Christiano (2002) to derive an

empirical test for the size of agent’s information set in the economy of a real euro area member country.

References

Belke A. (2003): The Rotation Model Is Not Sustainable, Intereconomics, 119-124.

Benigno P., Salido J.D.L. (2006): Inflation persistence and optimal monetary policy in the euro
area, Journal of Money, Credit and Banking, 38(3), 587-614.

Berger H., Ehrmann M., Fratzscher M. (2006): Forecasting ECB Monetary Policy: Asccuracy
Is (Still) a Matter of Geography, IMF Working Paper, 06/41.

Blanchard O.J., Kahn C.M. (1980): The Solution of Linear Difference Models under Rational

Ezpectations, Econometrica, 48(5), 1305-1311.
Calmfors L. (ed.) (2007): The EEAG report on the european economy 2007, CESifo.

Christiano L.J. (2002): Solving Dynamic Equilibrium Models by a Method of Undetermined

Coefficients, Computational Economics, 20, 21-55.

Clarida R., Gali J., Gertler M. (1999): The Science of Monetary Policy: A New Keynesian
Perspective, Journal of Economic Literature, XXXVII, 1661-1707.

Clarida R., Gali J., Gertler M. (2001): Optimal Monetary Policy in Open versus Closed

Economies: An Integrated Approach, American Economic Review, 91(2), 248-252.

26



Clausen V., Hayo B. (2006): Asymmetric Monetary Policy Effects in EMU, Applied Economics,
38(10), 1123-1134.

DeJong D.N., Dave C. (2007): Structural Macroeconometrics, Princeton University Press.

Eleftheriou M., Gerdesmeier D., Roffia B. (2006): Monetary policy rules in the pre-EMU era.

Is there a common rule?, ECB Working Paper Series, 659.

European Central Bank (2003): Inflation Differentials in the FEuro Area: Potential Causes and

Policy Implications.

European Commission (2006): Adjustment Dynamics in the FEuro Area - FEzperiences and

Challenges, European Economy, 6/2006.

European Commission (2008): EMU@10. Successes and Challenges after 10 Years of Economic

and Monetary Union, European Economy, 2/2008.

Farmer R.E., Waggoner D.F., Zha T. (2008): Minimal State Variable Solutions to
Markov-Switching Rational Expectations Model, Federal Reserve Bank of Atlanta Working Paper
Series, 2008-23.

Flaig G., Wollmershiuser T. (2007): Does the Euro-Zone Diverge? A Stress Indicator for

Analyzing Trends and Cycles in Real GDP and Inflation, CESifo Working Paper, 1937.

Frankel J.A., Rose A.K. (1998): The Endogeneity of the Optimum Currency Area Criteria, The

Economic Journal, 108, 1009-1025.

Fuhrer J.C., Rudebusch G.D. (2004): Estimating the Euler equation for output, Journal of

Monetary Economics, 51(6), 1133-1153.

Gali J., Gertler M. (1999): Inflation dynamics: A structural econometric analysis, Journal of

Monetary Economics, 44(2), 195-222.

Gali J., Gertler M., Lopez-Salido J.D. (2001): European Inflation Dynamics, European Economic

Review, 45, 1237-1270.

Gerlach-Kristen P. (2005): Monetary Policy Committees and Interest Rate Setting, European

Economic Review, 50, 457-507.

27



Goodhart C., Hofmann B. (2005): The Phillips Curve, the IS Curve and Monetary Transmission:
Evidence for the US and the Euro Area, CESifo Economic Studies, 51(4).

Gorska A. (2009): Wplyw rozszerzenia strefy euro na sposéb podejmowania decyzji w drodze
glosowania w Radzie Prezesow EBC - aspekt instytucjonalno-prawny, Raport nt. pelnego
uczestnictwa Rzeczypospolitej Polskiej w trzecim etapie Unii Gospodaczej i Walutowej. Projekty

badawcze, www.nbp.pl.

HM Treasury (2003): UK Membership of the Single Currency. An Assessment of the Five Economic

Tests.

Klein P. (2000): Using the Generalized Schur Form to Solve a Multivariate Linear Rational

Ezxpectations Model, Journal of Economic Dynamics and Control, 24, 1405-1423.

Kosior A., Rozkrut M., Toréj A. (2008): Rotation Scheme of the ECB Governing Council:
Monetary Policy Effectiveness and Voting Power Analysis, Raport nt. pelnego uczestnictwa
Rzeczypospolitej Polskiej w trzecim etapie Unii Gospodaczej i Walutowej. Projekty badawcze,

www.nbp.pl, 9, 53-101.

Lindé J. (2005): FEstimating New-Keynesian Phillips Curves: A Full Information Mazimum

Likelihood Approach, Journal of Monetary Economics, 52, 1135-1149.
Ljungqvist L., Sargent T.J. (2004): Recursive Macroeconomic Theory, MIT Press.

Marzinotto B. (2008): Why so much wage restraint in EMU? The role of country size, University

of Teramo Department of Communication Working Paper, 35.

Mavroeidis S. (2005): Identification Issues in Forward-Looking Models Estimated by GMM, with an

Application to the Phillips Curve, Journal of Money, Credit, and Banking.

Narodowy Bank Polski (2009): Raport na temat pelnego uczestnictwa Rzeczypospolitej Polskiej w

trzecim etapie Unii Gospodarczej i Walutowej, www.nbp.pl.

Rumler F. (2007): Estimates of the Open Economy New Keynesian Phillips Curve for Euro Area

Countries, Open Economies Review, 18.

Sauer S., Sturm J.E. (2003): Using Taylor Rules to Understand ECB Monetary Policy, German
Economic Review, 8(3), 375-398.

28



Sims C.A. (2001): Solving Linear Rational Ezpectations Models, Computational Economics, 20,
1-20.

Skrzypczynski P. (2006): Analiza synchronizacji cykli koniunkturalnych w strefie euro, Materialy i
Studia NBP, 210.

Séderlind P. (1999): Solution and estimation of RE macromodels with optimal policy, European
Economic Review, 43, 813-823.

Stazka A. (2008): The Flexible Exchange Rate as a Stabilising Instrument: The Case of Poland,
Raport nt. pelnego uczestnictwa Rzeczypospolitej Polskiej w trzecim etapie Unii Gospodaczej i

Walutowej. Projekty badawcze.

Szymczyk L. (2008): Implikacje Traktatu z Lizbony dla wwarunkowan instytucjonalnych
funkcjonowania strefy euro, Raport nt. pelnego uczestnictwa Rzeczypospolitej Polskiej w trzecim

etapie Unii Gospodaczej i Walutowej. Projekty badawcze, www.nbp.pl.

Taylor J.B. (1993): Discretion versus policy rules in practice, Carnegie-Rochester Conference Series

on Public Policy, 39(1), 195-214.

Tordj A. (2009): Macroeconomic adjustment and heterogeneity in the euro area, National Bank of

Poland Working Paper, 54.

Uhlig H. (1999): Computational Methods for the Study of Dynamic Economies, chapter A Toolkit

for Analyzing Nonlinear Dynamic Stochastic Models Easily, 30-61, Oxford Universtiy Press.

Walters A. (1994): The Economics and Politics of Money: The. Selected Essays of Alan Walters,

chapter Walters Critique, U.K. Elgar.

Woodford M. (2006): Interpreting Inflation Persistence: Comments on the Conference on
"Quantitative Evidence on Price Determination”, Journal of Money, Credit and Banking, 39(sl),

203-210.

29



Appendix 1: Construction of matrices A, B and C in Subsection

3.2
1 01><n 01><n 01><n 0 01><n 01><n
0n><1 In Onxn Onxn 0n><1 Onxn Onxn
0n><1 01’L><n In Onxn 0n><1 Onxn Onxn
A= 0n><1 0n><n 0n><n In 0n><1 Onxn Onxn ’
0 O1><n 01><n 01><n 1 01><’I’L 01><n
Cy —Be Onxn Opxn —PBr /Bf Br
Cr 0n><n 0n><n O’I’LXTL 0n><1 On><n Wy ]
1 01><n 01><n 01><n (1—[)) (T*—f—ﬂ'* _77r77*)
0n><1 In 0n><n 0n><n 0n><1
On><1 Onxn 0n><n Onxn 0n><1
T
B(t) = 0n><1 Onxn 0n><n Onxn 0n><1
0 01><n 01><n 01><n P
On><n 025In In Onxn (1 _p) Yy ((1 —Oé) WT_FO[G’;T)
L 0n><n 0'rL><n 0n><n In (1 —P) ,)/71' ((1 —Oé) WT+aa’i'T)
(1 —wp1 —wp1) Ty Brari
03,+1,2n (1 —wpo —wy2)ms Br,273
C= , Cnr = , Cy = 3
I2n
| (L —we o7 —wyor)m, | | Brorry |
v = diag |: Y1 Y2 Yn :|7 wr = diag { wf1  We2 Wfn :|:
wp = { Wp1 Wh2 Wh,n }v B¢ = diag { Bra1 Br2 Bfn ]’
By = diag [ Bv1 Bvo Bb.n :|7 Br = diag |: Br,l Br,Q /Br,n :|7
1 —Bs 1102 —Bs1Ton- Be,1
,@ _ 76572 13111)2 1 75572 11—UZ)2 ﬂ _ 75C72 11011112
s — , Pe =
L _ﬁsm 1?&,” _65717, 1105," 1 | L _ﬁc,n 11011,"
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Appendix 2: Construction of matrices used in Subsection 3.3

0n+2><n+2 On+2><n 0n+2><n

r=2, 00 = Onxcnt2 B¢ By J
Onxcnt2 Onxn wr
[ 1 O 0 01 Orn |
Opx1 I, Ons Opxn 0,251,
ar=| (1=p)(r* +7° =77) Oixn  —1 (1=p)yw” (1-p)rvw" |
Cy B —Br —Bs 0sxn
i Cr Onxn  Onxi 2l -1, i
[ 21 04w 0 Oixn Oin |
Onx1 L. 0Opxi Opxn Onxn
Qs = 0 Oixn P Oixn Oixn |> Bo = 0fix4n B1

0n><1 On><n 0n><1 /Bb Onxn

L On><1 On><n 0n><1 Onxn wWp

Ont+1)xn  O@m+yxn  Ont1)x2n
I, Onxn 0 x2n
0, xn I, 0y x2n
O1xn O1xn O1x2n |
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